Fabricating reflectors for displaying multiple images

A great deal of attention has been devoted to the fabrication of reflectors that can display different color images when viewed from different directions not only in industry but also for the arts. Although such reflectors have previously been successfully fabricated, the number of images displayed has been limited to two or they suffer from ghosting artifacts where mixed images appear. Furthermore, the previous methods need special hardware and/or materials to fabricate the reflectors. Thus, those techniques are not suitable for printing reflectors on everyday personal objects made of different materials, such as name cards, letter sheets, envelopes, and plastic cases. To overcome these limitations, we propose a method for fabricating reflectors using a standard ultraviolet printer (UV printer). UV printer can render a specified 2D color pattern on an arbitrary material and by overprinting the printed pattern can be raised, that is, the printed pattern becomes a microstructure having color and height. We propose using these micro structures to formulate a method for designing spatially varying reflections that can display different target images when viewed from different directions. The microstructure is calculated by minimizing an objective function that measures the differences between the intensities of the light reflected from the reflector and that of the target image. We show several fabricated reflectors to demonstrate the usefulness of the proposed method.

[1]  Kei Iwasaki,et al.  Pixel Art with Refracted Light by Rearrangeable Sticks , 2012, Comput. Graph. Forum.

[2]  M. Alexa,et al.  Reliefs as images , 2010, ACM Trans. Graph..

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  Frédo Durand,et al.  Fabricating BRDFs at high spatial resolution using wave optics , 2013, ACM Trans. Graph..

[5]  Wojciech Matusik,et al.  Printing spatially-varying reflectance , 2009, ACM Trans. Graph..

[6]  Derek Bradley,et al.  Manufacturing Layered Attenuators for Multiple Prescribed Shadow Images , 2012, Comput. Graph. Forum.

[7]  Roger D. Hersch,et al.  Band moir images , 2004, SIGGRAPH 2004.

[8]  Gordon Wetzstein,et al.  Polarization fields: dynamic light field display using multi-layer LCDs , 2011, SA '11.

[9]  Olga Sorkine-Hornung,et al.  Ink-and-ray: Bas-relief meshes for adding global illumination effects to hand-drawn characters , 2014, TOGS.

[10]  R. Raskar,et al.  Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization , 2010, SIGGRAPH 2010.

[11]  Adam Finkelstein,et al.  Digital bas-relief from 3D scenes , 2007, ACM Trans. Graph..

[12]  Ken Perlin,et al.  An autostereoscopic display , 2000, SIGGRAPH.

[13]  Yue Dong,et al.  Bi-scale appearance fabrication , 2013, ACM Trans. Graph..

[14]  Marc Alexa,et al.  ShadowPix: Multiple Images from Self Shadowing , 2012, Comput. Graph. Forum.

[15]  Dietrich Lehmann,et al.  Nonsmooth nonnegative matrix factorization (nsNMF) , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Olga Sorkine-Hornung,et al.  Appearance-mimicking surfaces , 2014, ACM Trans. Graph..

[17]  Hans-Peter Seidel,et al.  Automatic Generation of Bas-reliefs from 3D Shapes , 2007, IEEE International Conference on Shape Modeling and Applications 2007 (SMI '07).

[18]  S. Rusinkiewicz,et al.  Computational highlight holography , 2010, SIGGRAPH 2010.

[19]  Matthew Brand Specular holography , 2011, ArXiv.

[20]  Gordon Wetzstein,et al.  Tensor displays , 2012, ACM Trans. Graph..

[21]  David J. Kriegman,et al.  The Bas-Relief Ambiguity , 2004, International Journal of Computer Vision.

[22]  Gordon Wetzstein,et al.  Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays , 2011, ACM Trans. Graph..

[23]  Anat Levin,et al.  A reflectance display , 2014, ACM Trans. Graph..

[24]  Marc Alexa,et al.  Parallax Walls: Light fields from occlusion on height fields , 2013, Comput. Graph..

[25]  Roger D. Hersch,et al.  Color imaging and pattern hiding on a metallic substrate , 2015, ACM Trans. Graph..

[26]  Roger D. Hersch,et al.  Band moiré images , 2004, ACM Trans. Graph..

[27]  Roger D. Hersch,et al.  Color changing effects with anisotropic halftone prints on metal , 2015, ACM Trans. Graph..

[28]  Markus H. Gross,et al.  The magic lens , 2012, ACM Trans. Graph..

[29]  Niloy J. Mitra,et al.  Shadow art , 2009, ACM Trans. Graph..