Reconstructing Tree-Child Networks from Reticulate-Edge-Deleted Subnetworks

Network reconstruction lies at the heart of phylogenetic research. Two well-studied classes of phylogenetic networks include tree-child networks and level-k networks. In a tree-child network, every non-leaf node has a child that is a tree node or a leaf. In a level-k network, the maximum number of reticulations contained in a biconnected component is k. Here, we show that level-k tree-child networks are encoded by their reticulate-edge-deleted subnetworks, which are subnetworks obtained by deleting a single reticulation edge, if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 2$$\end{document}k≥2. Following this, we provide a polynomial-time algorithm for uniquely reconstructing such networks from their reticulate-edge-deleted subnetworks. Moreover, we show that this can even be done when considering subnetworks obtained by deleting one reticulation edge from each biconnected component with k reticulations.

[1]  Arndt von Haeseler,et al.  Network models for sequence evolution , 1993, Journal of Molecular Evolution.

[2]  V Moulton,et al.  Likelihood analysis of phylogenetic networks using directed graphical models. , 2000, Molecular biology and evolution.

[3]  Céline Scornavacca,et al.  Reconstructible Phylogenetic Networks: Do Not Distinguish the Indistinguishable , 2015, PLoS Comput. Biol..

[4]  Daniel H. Huson,et al.  Phylogenetic Networks: Contents , 2010 .

[5]  Leo van Iersel,et al.  Constructing Level-2 Phylogenetic Networks from Triplets , 2009, IEEE ACM Trans. Comput. Biol. Bioinform..

[6]  Charles Semple,et al.  Determining phylogenetic networks from inter-taxa distances , 2016, Journal of mathematical biology.

[7]  Vincent Moulton,et al.  TriLoNet: Piecing Together Small Networks to Reconstruct Reticulate Evolutionary Histories. , 2016, Molecular biology and evolution.

[8]  Stephen J. Willson Regular Networks Can be Uniquely Constructed from Their Trees , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[9]  Dan Gusfield,et al.  A Fundamental Decomposition Theory for Phylogenetic Networks and Incompatible Characters , 2005, RECOMB.

[10]  Sagi Snir,et al.  Maximum likelihood of phylogenetic networks , 2006, Bioinform..

[11]  Leo van Iersel,et al.  Constructing Level-2 Phylogenetic Networks from Triplets , 2008, RECOMB.

[12]  J. Hein Reconstructing evolution of sequences subject to recombination using parsimony. , 1990, Mathematical biosciences.

[13]  Gabriel Cardona,et al.  Comparison of Tree-Child Phylogenetic Networks , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[14]  Tandy J. Warnow,et al.  Reconstructing Reticulate Evolution in SpeciesTheory and Practice , 2005, J. Comput. Biol..

[15]  Wing-Kin Sung,et al.  Constructing a Smallest Refining Galled Phylogenetic Network , 2005, RECOMB.

[16]  Stephen J. Willson,et al.  Properties of Normal Phylogenetic Networks , 2010, Bulletin of mathematical biology.

[17]  Katharina T. Huber,et al.  How Much Information is Needed to Infer Reticulate Evolutionary Histories? , 2014, Systematic biology.

[18]  D. Morrison,et al.  Networks in phylogenetic analysis: new tools for population biology. , 2005, International journal for parasitology.

[19]  Charles Semple,et al.  Recovering normal networks from shortest inter-taxa distance information , 2018, Journal of Mathematical Biology.

[20]  Wing-Kin Sung,et al.  Inferring a Level-1 Phylogenetic Network from a Dense Set of Rooted Triplets , 2004, COCOON.

[21]  Leo van Iersel,et al.  Binets: Fundamental Building Blocks for Phylogenetic Networks , 2017, Bulletin of mathematical biology.

[22]  Charles Semple,et al.  Constructing Tree-Child Networks from Distance Matrices , 2017, Algorithmica.

[23]  P. H. A. Sneath,et al.  Cladistic Representation of Reticulate Evolution , 1975 .

[24]  Steven Kelk,et al.  Phylogenetic Networks: Concepts, Algorithms and Applications , 2012 .

[25]  Vincent Moulton,et al.  Trinets encode tree-child and level-2 phylogenetic networks , 2014, Journal of mathematical biology.

[26]  Katharina T. Huber,et al.  Encoding and Constructing 1-Nested Phylogenetic Networks with Trinets , 2012, Algorithmica.

[27]  Tandy J. Warnow,et al.  Reconstructing reticulate evolution in species: theory and practice , 2004, RECOMB.

[28]  Philippe Gambette,et al.  On the challenge of reconstructing level-1 phylogenetic networks from triplets and clusters , 2015, Journal of mathematical biology.