Augmented Lagrangian Methods for the Solution of Generalized Nash Equilibrium Problems

We propose an augmented Lagrangian-type algorithm for the solution of generalized Nash equilibrium problems (GNEPs). Specifically, we discuss the convergence properties with regard to both feasibility and optimality of limit points. This is done by introducing a secondary GNEP as a new optimality concept. In this context, special consideration is given to the role of suitable constraint qualifications that take into account the particular structure of GNEPs. Furthermore, we consider the behavior of the method for jointly convex GNEPs and describe a modification which is tailored towards the computation of variational equilibria. Numerical results are included to illustrate the practical performance of the overall method.

[1]  J. Goodman Note on Existence and Uniqueness of Equilibrium Points for Concave N-Person Games , 1965 .

[2]  A. Bensoussan Points de Nash Dans le Cas de Fonctionnelles Quadratiques et Jeux Differentiels lineaires a N Personnes , 1974 .

[3]  R. Rockafellar Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .

[4]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[5]  James V. Burke,et al.  A robust sequential quadratic programming method , 1989, Math. Program..

[6]  Liqun Qi,et al.  A nonsmooth version of Newton's method , 1993, Math. Program..

[7]  L. Qi,et al.  A Survey of Some Nonsmooth Equations and Smoothing Newton Methods , 1999 .

[8]  Zengxin Wei,et al.  On the Constant Positive Linear Dependence Condition and Its Application to SQP Methods , 1999, SIAM J. Optim..

[9]  M. Fukushima,et al.  On the Rate of Convergence of the Levenberg-Marquardt Method , 2001 .

[10]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[11]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[12]  Ya-Xiang Yuan,et al.  On the Quadratic Convergence of the Levenberg-Marquardt Method without Nonsingularity Assumption , 2005, Computing.

[13]  Andreas Fischer,et al.  On generalized Nash games and variational inequalities , 2007, Oper. Res. Lett..

[14]  Masao Fukushima,et al.  Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games , 2009, Comput. Manag. Sci..

[15]  Christian Kanzow,et al.  Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions , 2009, Comput. Optim. Appl..

[16]  Francisco Facchinei,et al.  Generalized Nash equilibrium problems and Newton methods , 2008, Math. Program..

[17]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..

[18]  Francisco Facchinei,et al.  Penalty Methods for the Solution of Generalized Nash Equilibrium Problems , 2010, SIAM J. Optim..

[19]  Masao Fukushima,et al.  Restricted generalized Nash equilibria and controlled penalty algorithm , 2011, Comput. Manag. Sci..

[20]  Francisco Facchinei,et al.  Partial penalization for the solution of generalized Nash equilibrium problems , 2011, J. Glob. Optim..

[21]  Francisco Facchinei,et al.  On the solution of the KKT conditions of generalized Nash equilibrium problems , 2011, SIAM J. Optim..

[22]  Messaoud Bounkhel,et al.  Quasi-Variational Inequalities , 2012 .

[23]  Oliver Stein,et al.  Nonsmooth optimization reformulations of player convex generalized Nash equilibrium problems , 2012, J. Glob. Optim..

[24]  Paulo J. S. Silva,et al.  A relaxed constant positive linear dependence constraint qualification and applications , 2011, Mathematical Programming.

[25]  Francisco Facchinei,et al.  An LP-Newton method: nonsmooth equations, KKT systems, and nonisolated solutions , 2013, Mathematical Programming.

[26]  José Mario Martínez,et al.  Practical augmented Lagrangian methods for constrained optimization , 2014, Fundamentals of algorithms.

[27]  Andreas Fischer,et al.  GENERALIZED NASH EQUILIBRIUM PROBLEMS - RECENT ADVANCES AND CHALLENGES , 2014 .

[28]  Francisco Facchinei,et al.  A new error bound result for Generalized Nash Equilibrium Problems and its algorithmic application , 2014, Comput. Optim. Appl..

[29]  Alexey F. Izmailov,et al.  On error bounds and Newton-type methods for generalized Nash equilibrium problems , 2014, Comput. Optim. Appl..

[30]  Christian Kanzow,et al.  On the multiplier-penalty-approach for quasi-variational inequalities , 2016, Math. Program..