Proposal for Parameter Selection of the Vortex Particle Swarm Optimization during the Dispersion Stage

This paper presents the parameter selection for the optimization algorithm Vortex Particle Swarm Optimization (VPSO). The optimization algorithm switches between translational (convergence) and vortex (dispersion) behavior of the swarm to achieve a good exploration of the search space and avoid getting trapped in local minima. This proposal is based on living organism strategies such as foraging and predator avoidance. The selection of parameters is proposed based on an approximate analysis of the swarm behavior.

[1]  Mauro Birattari,et al.  On the Invariance of Ant Colony Optimization , 2007, IEEE Transactions on Evolutionary Computation.

[2]  W. Rappel,et al.  Self-organization in systems of self-propelled particles. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[4]  Mounir Ben Ghalia,et al.  Regrouping particle swarm optimization: A new global optimization algorithm with improved performance consistency across benchmarks , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[5]  Ellips Masehian,et al.  Particle Swarm Optimization Methods, Taxonomy and Applications , 2009 .

[6]  Thomas Weise,et al.  Global Optimization Algorithms -- Theory and Application , 2009 .

[7]  Helbert E. Espitia,et al.  Vortex Particle Swarm Optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[8]  A. Bertozzi,et al.  Self-propelled particles with soft-core interactions: patterns, stability, and collapse. , 2006, Physical review letters.

[9]  Debasish Ghose,et al.  Glowworm swarm optimization for simultaneous capture of multiple local optima of multimodal functions , 2009, Swarm Intelligence.

[10]  Butler Hine,et al.  BEES: exploring Mars with bioinspired technologies , 2004, Computer.

[11]  Kevin M. Passino,et al.  Biomimicry for Optimization, Control and Automation , 2004, IEEE Transactions on Automatic Control.

[12]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[13]  Kevin M. Passino,et al.  Biomimicry of bacterial foraging for distributed optimization and control , 2002 .

[14]  Frank Moss,et al.  Pattern formation and stochastic motion of the zooplankton Daphnia in a light field , 2003 .

[15]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[16]  Colin R. McInnes,et al.  Wall following to escape local minima for swarms of agents using internal states and emergent behaviour , 2008 .

[17]  A. Mucherino,et al.  Monkey search: a novel metaheuristic search for global optimization , 2007 .

[18]  Lei Yin,et al.  A PSO Algorithm based on Biologe Population Multiplication (PMPSO) , 2010, ICCA 2010.

[19]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[20]  P. Olver Nonlinear Systems , 2013 .

[21]  Jaco F. Schutte,et al.  Particle swarms in sizing and global optimization , 2002 .