Polyamine-mediated mechanisms contribute to oxidative stress tolerance in Pseudomonas syringae

[1]  H. Rosli,et al.  Inferring the Significance of the Polyamine Metabolism in the Phytopathogenic Bacteria Pseudomonas syringae: A Meta-Analysis Approach , 2022, Frontiers in Microbiology.

[2]  S. Chevalier,et al.  Gram-Negative Bacterial Envelope Homeostasis under Oxidative and Nitrosative Stress , 2022, Microorganisms.

[3]  Natalia C Rosas,et al.  Targeting bacterial outer-membrane remodelling to impact antimicrobial drug resistance. , 2021, Trends in microbiology.

[4]  Cara H. Haney,et al.  Putrescine and Its Metabolic Precursor Arginine Promote Biofilm and c-di-GMP Synthesis in Pseudomonas aeruginosa , 2021, Journal of bacteriology.

[5]  Da-Wen Sun,et al.  Metabolomic analyses on microbial primary and secondary oxidative stress responses. , 2021, Comprehensive reviews in food science and food safety.

[6]  Anand Krishnan Prakash,et al.  Free spermidine evokes superoxide radicals that manifest toxicity , 2021, bioRxiv.

[7]  Y. Gan,et al.  New roles for glutathione: Modulators of bacterial virulence and pathogenesis , 2021, Redox biology.

[8]  N. Polacek,et al.  Oxidative Stress in Bacteria and the Central Dogma of Molecular Biology , 2021, Frontiers in Molecular Biosciences.

[9]  K. Yusoff,et al.  Combinatorial Antimicrobial Efficacy and Mechanism of Linalool Against Clinically Relevant Klebsiella pneumoniae , 2021, Frontiers in Microbiology.

[10]  Xuedong Zhou,et al.  Reactive Oxygen Species in Pathogen Clearance: The Killing Mechanisms, the Adaption Response, and the Side Effects , 2021, Frontiers in Microbiology.

[11]  M. Fujita,et al.  Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms , 2021, Antioxidants.

[12]  K. Nagaraja,et al.  Insights into the Oxidative Stress Response of Salmonella enterica serovar Enteritidis Revealed by the Next Generation Sequencing Approach , 2020, Antioxidants.

[13]  A. Tkachenko Multifaceted role of polyamines in bacterial adaptation to antibiotic-mediated oxidative stress , 2020 .

[14]  M. Zembala,et al.  Antioxidative action of polyamines in protection of phospholipid membranes exposed to ozone stress. , 2020, Acta biochimica Polonica.

[15]  C. Verma,et al.  Mechanism of polyamine induced colistin resistance through electrostatic networks on bacterial outer membranes. , 2020, Biochimica et biophysica acta. Biomembranes.

[16]  F. Mohamed,et al.  Oxidative Stress Influences Pseudomonas aeruginosa Susceptibility to Antibiotics and Reduces Its Pathogenesis in Host , 2020, Current Microbiology.

[17]  Álvaro L. Pérez-Quintero,et al.  A Plant Pathogen Type III Effector Protein Subverts Translational Regulation to Boost Host Polyamine Levels. , 2019, Cell host & microbe.

[18]  M. Ramos-González,et al.  Arginine Biosynthesis Modulates Pyoverdine Production and Release in Pseudomonas putida as Part of the Mechanism of Adaptation to Oxidative Stress , 2019, Journal of bacteriology.

[19]  Lian-Hui Zhang,et al.  Putrescine Is an Intraspecies and Interkingdom Cell-Cell Communication Signal Modulating the Virulence of Dickeya zeae , 2019, Front. Microbiol..

[20]  T. Silhavy,et al.  Envelope stress responses: balancing damage repair and toxicity , 2019, Nature Reviews Microbiology.

[21]  G. Preston,et al.  Pseudomonas syringae: enterprising epiphyte and stealthy parasite. , 2019, Microbiology.

[22]  J. Imlay Where in the world do bacteria experience oxidative stress? , 2018, Environmental microbiology.

[23]  F. Pieckenstain,et al.  Modulation of plant and bacterial polyamine metabolism during the compatible interaction between tomato and Pseudomonas syringae. , 2018, Journal of plant physiology.

[24]  A. Michael Polyamine function in archaea and bacteria , 2018, The Journal of Biological Chemistry.

[25]  Omri M. Finkel,et al.  Phevamine A, a small molecule that suppresses plant immune responses , 2018, Proceedings of the National Academy of Sciences.

[26]  K. Kashiwagi,et al.  Effects of polyamines on protein synthesis and growth of Escherichia coli , 2018, The Journal of Biological Chemistry.

[27]  V. de Lorenzo,et al.  The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure. , 2018, Microbiology.

[28]  P. Masson,et al.  Metabolomics of tomato xylem sap during bacterial wilt reveals Ralstonia solanacearum produces abundant putrescine, a metabolite that accelerates wilt disease , 2018, Environmental microbiology.

[29]  Brian H. Kvitko,et al.  Pattern-Triggered Immunity Alters the Transcriptional Regulation of Virulence-Associated Genes and Induces the Sulfur Starvation Response in Pseudomonas syringae pv. tomato DC3000. , 2018, Molecular plant-microbe interactions : MPMI.

[30]  J. Pagés,et al.  Stress responses, outer membrane permeability control and antimicrobial resistance in Enterobacteriaceae. , 2018, Microbiology.

[31]  K. Long,et al.  Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida , 2017, Applied and Environmental Microbiology.

[32]  Bhaskar Gupta,et al.  Hydrogen Peroxide and Polyamines Act as Double Edged Swords in Plant Abiotic Stress Responses , 2016, Front. Plant Sci..

[33]  L. Foster,et al.  Salmonella Rapidly Regulates Membrane Permeability To Survive Oxidative Stress , 2016, mBio.

[34]  A. Michael Polyamines in Eukaryotes, Bacteria, and Archaea* , 2016, The Journal of Biological Chemistry.

[35]  Hideyuki Suzuki,et al.  Three Members of Polyamine Modulon under Oxidative Stress Conditions: Two Transcription Factors (SoxR and EmrR) and a Glutathione Synthetic Enzyme (GshA) , 2015, PloS one.

[36]  L. Reynolds,et al.  Direct measurement of oxidative and nitrosative stress dynamics in Salmonella inside macrophages , 2014, Proceedings of the National Academy of Sciences.

[37]  L. Miguel Encarnação,et al.  A New Wave , 2013, IEEE Computer Graphics and Applications.

[38]  S. He,et al.  Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. , 2013, Annual review of phytopathology.

[39]  N. Kim,et al.  Pepper Arginine Decarboxylase Is Required for Polyamine and γ-Aminobutyric Acid Signaling in Cell Death and Defense Response1[C][W][OPEN] , 2013, Plant Physiology.

[40]  D. Becker,et al.  Pseudomonas syringae Catalases Are Collectively Required for Plant Pathogenesis , 2012, Journal of bacteriology.

[41]  C. Isarankura-Na-Ayudhya,et al.  Development of bacterial cell-based system for intracellular antioxidant activity screening assay using green fluorescence protein (GFP) reporter , 2012 .

[42]  M. Shumkov,et al.  Polyamines reduce oxidative stress in Escherichia coli cells exposed to bactericidal antibiotics. , 2012, Research in microbiology.

[43]  G. Preston,et al.  Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas. , 2012, FEMS microbiology letters.

[44]  S. Lewenza,et al.  Surface-Localized Spermidine Protects the Pseudomonas aeruginosa Outer Membrane from Antibiotic Treatment and Oxidative Stress , 2011, Journal of bacteriology.

[45]  K. Vandepoele,et al.  ROS signaling: the new wave? , 2011, Trends in plant science.

[46]  V. Lushchak Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. , 2011, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[47]  M. L. Tondo,et al.  The Monofunctional Catalase KatE of Xanthomonas axonopodis pv. citri Is Required for Full Virulence in Citrus Plants , 2010, PloS one.

[48]  J. Selbig,et al.  Metabolomic and transcriptomic stress response of Escherichia coli , 2010, Molecular systems biology.

[49]  C. W. Tabor,et al.  Polyamines Are Not Required for Aerobic Growth of Escherichia coli: Preparation of a Strain with Deletions in All of the Genes for Polyamine Biosynthesis , 2009, Journal of bacteriology.

[50]  V. Sperandio,et al.  An Alternative Polyamine Biosynthetic Pathway Is Widespread in Bacteria and Essential for Biofilm Formation in Vibrio cholerae* , 2009, Journal of Biological Chemistry.

[51]  K. Mysore,et al.  Monitoring in planta bacterial infection at both cellular and whole-plant levels using the green fluorescent protein variant GFPuv. , 2007, The New phytologist.

[52]  G. Georgiou,et al.  The many faces of glutathione in bacteria. , 2006, Antioxidants & redox signaling.

[53]  William E Bentley,et al.  Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide , 2005, BMC Genomics.

[54]  Devin Oglesbee,et al.  Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators* , 2004, Journal of Biological Chemistry.

[55]  Jia Liu,et al.  The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  A. Tkachenko,et al.  Polyamines as Modulators of Gene Expression under Oxidative Stress in Escherichia coli , 2003, Biochemistry (Moscow).

[57]  I. Kim,et al.  Transcription of ahpC, katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damage. , 2003, Biochemical and biophysical research communications.

[58]  C. W. Tabor,et al.  Polyamines protect Escherichia coli cells from the toxic effect of oxygen , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[59]  T. Katsu,et al.  Interaction between Polyamines and Bacterial Outer Membranes as Investigated with Ion-Selective Electrodes , 2002, Antimicrobial Agents and Chemotherapy.

[60]  D. Bernik,et al.  Permeability and stability properties of membranes formed by lipids extracted from Lactobacillus acidophilus grown at different temperatures. , 1999, Archives of biochemistry and biophysics.

[61]  A. Delcour,et al.  Polyamines decrease Escherichia coli outer membrane permeability , 1996, Journal of Bacteriology.

[62]  W. Stemmer,et al.  Improved Green Fluorescent Protein by Molecular Evolution Using DNA Shuffling , 1996, Nature Biotechnology.

[63]  D. Roop,et al.  Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. , 1995, Gene.

[64]  J. Kalinowski,et al.  Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. , 1994, Gene.

[65]  H. Obata,et al.  Effects of Polyamines on the Ice-nucleating Activity of Erwinia uredovora KUIN-3 , 1993 .

[66]  D. Russell,et al.  Increased nuclear conjugated polyamines and transglutaminase during liver regeneration. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[67]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[68]  O. Geiger,et al.  Bacterial membrane lipids: diversity in structures and pathways. , 2016, FEMS microbiology reviews.

[69]  A. Collmer,et al.  Construction of Pseudomonas syringae pv. tomato DC3000 mutant and polymutant strains. , 2011, Methods in molecular biology.

[70]  O. Carmel-Harel,et al.  Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and saccharomyces cerevisiae responses to oxidative stress. , 2000, Annual review of microbiology.

[71]  H. Nojima,et al.  High efficiency transformation of Escherichia coli with plasmids. , 1990, Gene.

[72]  H. Souzu Fluorescence polarization studies on Escherichia coli membrane stability and its relation to the resistance of the cell to freeze-thawing. II. Stabilization of the membranes by polyamines. , 1986, Biochimica et biophysica acta.

[73]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.

[74]  Jeffrey H. Miller Experiments in molecular genetics , 1972 .