Enhanced Valley Splitting of Transition-Metal Dichalcogenide by Vacancies in Robust Ferromagnetic Insulating Chromium Trihalides.

Recently, single-layer CrI3, a member of the chromium trihalides CrX3 (where X = Cl, Br, or I), has been exfoliated and experimentally demonstrated as an atomically thin material suitable for two-dimensional spintronics. Valley splitting due to the magnetic proximity effect has been demonstrated in a WSe2/CrI3 van der Waals heterojunction. However, the understanding of the mechanisms behind the favorable performance of CrI3 is still limited. Here, we systematically study the carrier mobility and the intrinsic point defects in CrX3 and assess their influence on valley splitting in WSe2/CrI3 by first-principles calculations. The flat-band nature induces extremely large carrier mass and ultralow carrier mobility. In addition, intrinsic point defects-localized states in the middle of the band gap-show deep transition energy levels and act as carrier recombination centers, further lowering the carrier mobility. Moreover, vacancies in CrI3 can enhance ferromagnetism and valley splitting in a WSe2/CrI3 heterojunction, proving that chromium trihalides are excellent ferromagnetic insulators for spintronic and valleytronic applications.

[1]  F. Liu,et al.  Valley splitting in the van der Waals heterostructure WSe2/CrI3 : The role of atom superposition , 2019, Physical Review B.

[2]  W. Mi,et al.  Valley and spin splitting in monolayer TX2/antiferromagnetic MnO (T  =  Mo, W; X  =  S, Se) van der Waals heterostructures , 2019, Journal of Physics D: Applied Physics.

[3]  Dezheng Yang,et al.  Electric field mediated large valley splitting in the van der Waals heterostructure WSe2/CrI3 , 2018, Japanese Journal of Applied Physics.

[4]  W. Yao,et al.  Skyrmions in the Moiré of van der Waals 2D Magnets. , 2018, Nano letters.

[5]  Satoshi Okamoto,et al.  Stacking-Dependent Magnetism in Bilayer CrI3. , 2018, Nano letters.

[6]  F. Tafti,et al.  Controlling Magnetic and Optical Properties of the van der Waals Crystal CrCl3−xBrx via Mixed Halide Chemistry , 2018, Advanced materials.

[7]  Jinlan Wang,et al.  Surface Vacancy-Induced Switchable Electric Polarization and Enhanced Ferromagnetism in Monolayer Metal Trihalides. , 2018, Nano letters.

[8]  K. Novoselov,et al.  Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3 , 2018, Nature Electronics.

[9]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[10]  E. Kaxiras,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[11]  Z. Sheng,et al.  Critical behavior of two-dimensional intrinsically ferromagnetic semiconductor CrI3 , 2018, 1801.09878.

[12]  W. Mi,et al.  Ferroelectricity Tailored Valley Splitting in Monolayer WTe2/YMnO3 Heterostructures: A Route toward Electrically Controlled Valleytronics , 2017 .

[13]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[14]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[15]  Xiaodong Xu,et al.  Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics , 2017, Science Advances.

[16]  Wei Huang,et al.  Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field. , 2016, Nature nanotechnology.

[17]  Yingchun Cheng,et al.  Large Spin‐Valley Polarization in Monolayer MoTe2 on Top of EuO(111) , 2016, Advanced materials.

[18]  Jiwoong Park,et al.  Long-Lived Hole Spin/Valley Polarization Probed by Kerr Rotation in Monolayer WSe2. , 2016, Nano letters.

[19]  Qiang Sun,et al.  Exfoliating biocompatible ferromagnetic Cr-trihalide monolayers. , 2016, Physical chemistry chemical physics : PCCP.

[20]  Chi-Hang Lam,et al.  Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides , 2015, 1507.07275.

[21]  J. Qi,et al.  Giant and tunable valley degeneracy splitting in MoTe2 , 2015, 1504.04434.

[22]  Chaozheng He,et al.  Pressure-induced phase transition of BiOF: novel two-dimensional layered structures. , 2015, Physical chemistry chemical physics : PCCP.

[23]  Brian C. Sales,et al.  Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3 , 2015 .

[24]  D. Ralph,et al.  Breaking of valley degeneracy by magnetic field in monolayer MoSe2. , 2014, Physical review letters.

[25]  C. Felser,et al.  Proximity enhanced quantum spin Hall state in graphene , 2013, Carbon.

[26]  Yingchun Cheng,et al.  Magnetism by interfacial hybridization and p-type doping of MoS(2) in Fe(4)N/MoS(2) superlattices: a first-principles study. , 2014, ACS applied materials & interfaces.

[27]  Yong-Wei Zhang,et al.  Polarity-reversed robust carrier mobility in monolayer MoS₂ nanoribbons. , 2013, Journal of the American Chemical Society.

[28]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[29]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[30]  Y. Mei,et al.  Thinning and functionalization of few-layer graphene sheets by CF4 plasma treatment , 2012, Nanoscale Research Letters.

[31]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[32]  Soon Cheol Hong,et al.  Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H- M X 2 semiconductors ( M = Mo, W; X = S, Se, Te) , 2012 .

[33]  Yingbang Yao,et al.  Doping monolayer graphene with single atom substitutions. , 2012, Nano letters.

[34]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[35]  Yingchun Cheng,et al.  Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors , 2011 .

[36]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[37]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[38]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[39]  C. Walle,et al.  First-principles calculations for defects and impurities: Applications to III-nitrides , 2004 .

[40]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.