A Perspective on the Rise of Optofluidics and the Future

In the recent past, the field of optofluidics has thrived from the immense efforts of researchers from diverse communities. The concept of optofluidics combines optics and microfluidics to exploit novel properties and functionalities. In the very beginning, the unique properties of liquid, such as mobility, fungibility and deformability, initiated the motivation to develop optical elements or functions using fluid interfaces. Later on, the advancements of microelectromechanical system (MEMS) and microfluidic technologies enabled the realization of optofluidic components through the precise manipulation of fluids at microscale thus making it possible to streamline complex fabrication processes. The optofluidic system aims to fully integrate optical functions on a single chip instead of using external bulky optics, which can consequently lower the cost of system, downsize the system and make it promising for point-of-care diagnosis. This perspective gives an overview of the recent developments in the field of optofluidics. Firstly, the fundamental optofluidic components will be discussed and are categorized according to their basic working mechanisms, followed by the discussions on the functional instrumentations of the optofluidic components, as well as the current commercialization aspects of optofluidics. The paper concludes with the critical challenges that might hamper the transformation of optofluidic technologies from lab-based procedures to practical usages and commercialization.

[1]  Amir Hirsa,et al.  Fast focusing using a pinned-contact oscillating liquid lens , 2008 .

[2]  T. Koch,et al.  Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures , 1986 .

[3]  A. Asundi,et al.  Tunable optofluidic aperture configured by a liquid-core/liquid-cladding structure. , 2011, Optics letters.

[4]  G. Whitesides,et al.  Dynamic control of liquid-core/liquid-cladding optical waveguides , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[5]  Shin-Tson Wu,et al.  Tunable electronic lens using a gradient polymer network liquid crystal , 2003 .

[6]  Rene Heideman,et al.  Performance of a highly sensitive optical waveguide Mach-Zehnder interferometer immunosensor , 1993 .

[7]  Paolo Minzioni,et al.  A Comprehensive Review of Optical Stretcher for Cell Mechanical Characterization at Single-Cell Level , 2016, Micromachines.

[8]  Romeo Bernini,et al.  Integrated silicon optical sensors based on hollow core waveguide , 2007, SPIE OPTO.

[9]  Liang Dong,et al.  Tunable and movable liquid microlens in situ fabricated within microfluidic channels , 2007 .

[10]  Yuze Sun,et al.  Sensitive optical biosensors for unlabeled targets: a review. , 2008, Analytica chimica acta.

[11]  Frank Vollmer,et al.  Towards next-generation label-free biosensors: recent advances in whispering gallery mode sensors. , 2017, Lab on a chip.

[12]  Takaaki Ishigure,et al.  High-bandwidth graded-index polymer optical fiber , 1995 .

[13]  Y. Koike,et al.  Optimum index profile of the perfluorinated polymer-based GI polymer optical fiber and its dispersion properties , 2000, Journal of Lightwave Technology.

[14]  J. Baret,et al.  Microfluidic flow-focusing in ac electric fields. , 2014, Lab on a chip.

[15]  Roberto Osellame,et al.  Dual-point dual-wavelength fluorescence monitoring of DNA separation in a lab on a chip , 2010, Biomedical optics express.

[16]  S Xiong,et al.  An optofluidic prism tuned by two laminar flows. , 2011, Lab on a chip.

[17]  V. Lien,et al.  Demonstration of two-dimensional fluidic lens for integration into microfluidic flow cytometers , 2006 .

[18]  George M. Whitesides,et al.  Control of the shape of liquid lenses on a modified gold surface using an applied electrical potential across a self-assembled monolayer , 1995 .

[19]  A. Hawkins,et al.  The photonic integration of non-solid media using optofluidics , 2011 .

[20]  K. Mogensen,et al.  Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements. , 2004, Lab on a chip.

[21]  V. Lien,et al.  Microspherical surfaces with predefined focal lengths fabricated using microfluidic capillaries , 2003 .

[22]  K. Kurabayashi,et al.  PDMS-based opto-fluidic micro flow cytometer with two-color, multi-angle fluorescence detection capability using PIN photodiodes , 2004 .

[23]  Nam-Trung Nguyen,et al.  Multi-functional, optofluidic, in-plane, bi-concave lens: tuning light beam from focused to divergent , 2011 .

[24]  Refractive-index-based optofluidic particle manipulation , 2013 .

[25]  Edward A. Rietman,et al.  Adaptive geometric optics derived from nonlinear acoustic effects , 2004 .

[26]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[27]  Hyung Jin Sung,et al.  Optical mobility of blood cells for label-free cell separation applications , 2013 .

[28]  B. J. Eggleton,et al.  Optofluidics: a novel generation of reconfigurable and adaptive compact architectures , 2008 .

[29]  Noud W. L. Speijcken,et al.  In situ optofluidic control of reconfigurable photonic crystal cavities , 2012 .

[30]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[31]  Alexandre Mermillod-Blondin,et al.  Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens. , 2009, Optics letters.

[32]  Tony Jun Huang,et al.  Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing. , 2010, Lab on a chip.

[33]  P. Sarro,et al.  Integrated optofluidic Mach–Zehnder interferometer based on liquid core waveguides , 2008 .

[34]  Seung S. Lee,et al.  Focal tunable liquid lens integrated with an electromagnetic actuator , 2007 .

[35]  Frieder Mugele,et al.  Optofluidic lens with tunable focal length and asphericity , 2014, Scientific Reports.

[36]  R. Heideman,et al.  Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system , 1999 .

[37]  Demetri Psaltis,et al.  Optofluidics for energy applications , 2011, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[38]  Long Hsu,et al.  Dynamic and programmable cell-sorting by using microfluidics and holographic optical tweezers , 2005, SPIE Optics + Photonics.

[39]  Nam-Trung Nguyen,et al.  Micro-optofluidic Lenses: A review. , 2010, Biomicrofluidics.

[40]  Lei Xi,et al.  Liquid acoustic lens for photoacoustic tomography. , 2013, Optics letters.

[41]  B.J. Eggleton,et al.  Transverse probed microfluidic switchable photonic crystal fiber devices , 2004, IEEE Photonics Technology Letters.

[42]  Nam-Trung Nguyen,et al.  A tuneable micro-optofluidic biconvex lens with mathematically predictable focal length , 2010 .

[43]  Nam-Trung Nguyen,et al.  Disposable flow cytometer with high efficiency in particle counting and sizing using an optofluidic lens. , 2011, Optics letters.

[44]  A. Kristensen,et al.  Optofluidic tuning of photonic crystal band edge lasers , 2007 .

[45]  Jinjie Shi,et al.  Tunable Liquid Gradient Refractive Index (L-GRIN) lens with two degrees of freedom. , 2009, Lab on a chip.

[46]  Jinjie Shi,et al.  Tunable optofluidic microlens through active pressure control of an air–liquid interface , 2010 .

[47]  Matthew C. Mowlem,et al.  Design, simulation and characterisation of integrated optics for a microfabricated flow cytometer , 2010 .

[48]  Euan McLeod,et al.  Multiscale Bessel beams generated by a tunable acoustic gradient index of refraction lens. , 2006, Optics letters.

[49]  Xuming Zhang,et al.  Optofluidic tunable lens using laser-induced thermal gradient , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[50]  L K Chin,et al.  Microfluidic droplet grating for reconfigurable optical diffraction. , 2010, Optics letters.

[51]  Qiyin Fang,et al.  Optofluidic Device Based Microflow Cytometers for Particle/Cell Detection: A Review , 2016, Micromachines.

[52]  Laura M. Lechuga,et al.  The realization of an integrated Mach-Zehnder waveguide immunosensor in silicon technology , 1997 .

[53]  Benjamin J Eggleton,et al.  Measuring the dispersive properties of liquids using a microinterferometer. , 2011, Applied optics.

[54]  Nam-Trung Nguyen,et al.  Self-Aligned Interdigitated Transducers for Acoustofluidics , 2016, Micromachines.

[55]  M. Lapsley,et al.  A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection. , 2011, Lab on a chip.

[56]  J. M. Pope,et al.  Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI) , 2005, Vision Research.

[57]  Nam-Trung Nguyen,et al.  Thermally mediated control of liquid microdroplets at a bifurcation , 2009 .

[58]  B K Pierscionek,et al.  Refractive Index Gradient of Human Lenses , 1989, Optometry and vision science : official publication of the American Academy of Optometry.

[59]  Elinore M Mercer,et al.  Microfluidic sorting of mammalian cells by optical force switching , 2005, Nature Biotechnology.

[60]  R. Olshansky,et al.  Pulse broadening in graded-index optical fibers. , 1976, Applied optics.

[61]  A. Asundi,et al.  Tunable micro-optofluidic prism based on liquid-core liquid-cladding configuration. , 2010, Optics letters.

[62]  Jun Yang,et al.  A review of droplet resonators: Operation method and application , 2016 .

[63]  A. Hawkins,et al.  Highly efficient fluorescence detection in picoliter volume liquid-core waveguides , 2005 .

[64]  Martí Duocastella,et al.  Simultaneous imaging of multiple focal planes for three-dimensional microscopy using ultra-high-speed adaptive optics. , 2012, Journal of biomedical optics.

[65]  Stefan L. Schweizer,et al.  Rewritable photonic circuits , 2006 .

[66]  Patrick Dumais,et al.  Integrated optical sensor using a liquid-core waveguide in a Mach-Zehnder interferometer. , 2008, Optics express.

[67]  D. Psaltis,et al.  Nanofluidic tuning of photonic crystal circuits , 2006 .

[68]  S Büttgenbach,et al.  Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing. , 2005, Lab on a chip.

[69]  Hans Zappe,et al.  Optofluidic laser scanner based on a rotating liquid prism. , 2016, Applied optics.

[70]  Ai Qun Liu,et al.  A liquid waveguide based evanescent wave sensor integrated onto a microfluidic chip , 2008 .

[71]  Demetri Psaltis,et al.  A microfluidic 2×2 optical switch , 2004 .

[72]  E. Mcleod,et al.  Mechanics and refractive power optimization of tunable acoustic gradient lenses , 2007 .

[73]  Yong-Kweon Kim,et al.  Proposal of human eye's crystalline lens-like variable focusing lens , 1999 .

[74]  J. Squier,et al.  Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[75]  B. K. Juluri,et al.  Photonic crystal composites-based wide-band optical collimator , 2010 .

[76]  S Büttgenbach,et al.  Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift. , 2004, Lab on a chip.

[77]  P. Sarro,et al.  Microfluidic sensor based on integrated optical hollow waveguides. , 2004, Optics letters.

[78]  P. H. Yap,et al.  Optofluidic lens with low spherical and low field curvature aberrations. , 2016, Lab on a chip.

[79]  Paul Galvin,et al.  Emerging optofluidic technologies for point-of-care genetic analysis systems: a review , 2009, Analytical and bioanalytical chemistry.

[80]  Tony Jun Huang,et al.  Hydrodynamically tunable optofluidic cylindrical microlens. , 2007, Lab on a chip.

[81]  Edward A. Rietman,et al.  Tunable optics derived from nonlinear acoustic effects , 2004 .

[82]  H. Franke,et al.  Physical characterization of lightguide capillary cells , 1999 .

[83]  Romeo Bernini,et al.  Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors , 2016, Micromachines.

[84]  George M. Whitesides,et al.  Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels , 2006 .

[85]  Günter Gauglitz,et al.  Design of new integrated optical substrates for immuno-analytical applications , 1994 .

[86]  Frieder Mugele,et al.  Recent Developments in Optofluidic Lens Technology , 2016, Micromachines.

[87]  Rene Heideman,et al.  Development of an Optical Waveguide Interferometric Immunosensor , 1991 .

[88]  T. Huang,et al.  Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. , 2009, Lab on a chip.

[89]  Ryuji Koyama,et al.  Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay. , 2003, Lab on a chip.

[90]  Nam-Trung Nguyen,et al.  Biconcave micro-optofluidic lens with low-refractive-index liquids. , 2009, Optics letters.

[91]  Harald Giessen,et al.  Microfluidic photonic crystal double heterostructures , 2007 .

[92]  Y. Fainman,et al.  Optofluidic 1×4 switch , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[93]  Roberta Ramponi,et al.  Three-dimensional Mach-Zehnder interferometer in a microfluidic chip for spatially-resolved label-free detection. , 2010, Lab on a chip.

[94]  Zichun Le,et al.  Liquid Gradient Refractive Index Microlens for Dynamically Adjusting the Beam Focusing , 2015, Micromachines.

[95]  Wei Guo,et al.  AC electric field induced droplet deformation in a microfluidic T-junction. , 2016, Lab on a chip.

[96]  Kurt E. Petersen,et al.  Silicon Torsional Scanning Mirror , 1980, IBM J. Res. Dev..

[97]  P. Sarro,et al.  A hybrid silicon-PDMS optofluidic platform for sensing applications. , 2014, Biomedical optics express.

[98]  Sindy K. Y. Tang,et al.  Actuating Fluid–Fluid Interfaces for the Reconfiguration of Light , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[99]  R. W. Wood,et al.  The Mercury Paraboloid as a Reflecting Telescope , 1909 .

[100]  Romeo Bernini,et al.  High-visibility optofluidic Mach-Zehnder interferometer. , 2010, Optics letters.

[101]  Katsuo Kurabayashi,et al.  Recent advancements in optofluidics-based single-cell analysis: optical on-chip cellular manipulation, treatment, and property detection. , 2014, Lab on a chip.

[102]  A. Asundi,et al.  Modelling and optimization of micro optofluidic lenses. , 2009, Lab on a chip.

[103]  D. Deamer,et al.  Single-molecule detection sensitivity using planar integrated optics on a chip. , 2006, Optics letters.

[104]  Tony Jun Huang,et al.  Optofluidic tunable microlens by manipulating the liquid meniscus using a flared microfluidic structure. , 2010, Biomicrofluidics.

[105]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[106]  Hans Zappe,et al.  Tunable microfluidic microlenses. , 2005, Applied optics.

[107]  Hyung Jin Sung,et al.  Cross-type optical particle separation in a microchannel. , 2008, Analytical chemistry.

[108]  Yu-Hwa Lo,et al.  Fluidic adaptive lens of transformable lens type , 2004 .

[109]  Amir Hirsa,et al.  Electrochemically activated adaptive liquid lens , 2005 .

[110]  Min Gu,et al.  Microfluidic tunable photonic band-gap device , 2004 .

[111]  Holger Schmidt,et al.  Optofluidic waveguides: I. Concepts and implementations , 2008, Microfluidics and nanofluidics.

[112]  S. M. Sohel Murshed,et al.  Thermally controlled droplet formation in flow focusing geometry: formation regimes and effect of nanoparticle suspension , 2008 .

[113]  Euan McLeod,et al.  High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens. , 2008, Optics letters.

[114]  Different curvatures of tunable liquid microlens via the control of laminar flow rate , 2008 .

[115]  Bernard A. Malouin,et al.  Electromagnetic liquid pistons for capillarity-based pumping. , 2011, Lab on a chip.

[116]  N. Riza,et al.  Foundations for low-loss fiber gradient-index lens pair coupling with the self-imaging mechanism. , 2003, Applied optics.

[117]  Amr S. Helmy,et al.  Recent developments in optofluidic-assisted Raman spectroscopy , 2013 .

[118]  Nam-Trung Nguyen,et al.  A micro optofluidic lens with short focal length , 2009 .

[119]  Jan Ingenhoff,et al.  Biosensors using integrated optical devices , 1993 .

[120]  M. Vellekoop,et al.  Characterization of a microflow cytometer with an integrated three-dimensional optofluidic lens system. , 2010, Biomicrofluidics.

[121]  Sindy K. Y. Tang,et al.  Dynamically reconfigurable liquid-core liquid-cladding lens in a microfluidic channel. , 2008, Lab on a chip.

[122]  Shin‐Tson Wu,et al.  Tunable-focus flat liquid crystal spherical lens , 2004 .

[123]  S. Xiao,et al.  Slow-light enhancement of Beer-Lambert-Bouguer absorption , 2007, physics/0703059.

[124]  A. Datta,et al.  Microfabrication and characterization of teflon AF-coated liquid core waveguide channels in silicon , 2003 .

[125]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .