Truncated octahedral LiNi0.5Mn1.5O4 cathode material for ultralong-life lithium-ion battery: Positive (100) surfaces in high-voltage spinel system

[1]  Feng Chen,et al.  Microwave-assisted preparation of inorganic nanostructures in liquid phase. , 2014, Chemical reviews.

[2]  Arumugam Manthiram,et al.  A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries , 2014 .

[3]  Xiao‐Qing Yang,et al.  Sol-gel synthesis of aliovalent vanadium-doped LiNi(0.5)Mn(1.5)O(4) cathodes with excellent performance at high temperatures. , 2014, ChemSusChem.

[4]  C. Fisher,et al.  Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. , 2014, Chemical Society reviews.

[5]  Karim Zaghib,et al.  Spinel materials for high-voltage cathodes in Li-ion batteries , 2014 .

[6]  K. Persson,et al.  First-principles study of the nano-scaling effect on the electrochemical behavior in LiNi0.5Mn1.5O4 , 2013, Nanotechnology.

[7]  A. Mauger,et al.  Review of 5-V electrodes for Li-ion batteries: status and trends , 2013, Ionics.

[8]  Jun Chen,et al.  LiNi(0.5)Mn(1.5)O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. , 2013, Nano letters.

[9]  S. Ye,et al.  Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li–Mn–PO4 as the cathode for lithium-ion batteries , 2013 .

[10]  Kristin A. Persson,et al.  Surface structure and equilibrium particle shape of the LiMn2O4 spinel from first-principles calculations , 2013 .

[11]  M. Ge,et al.  Graphene-oxide-coated LiNi0.5Mn1.5O4 as high voltage cathode for lithium ion batteries with high energy density and long cycle life , 2013 .

[12]  Wei Li,et al.  Octahedral and truncated high-voltage spinel cathodes: the role of morphology and surface planes in electrochemical properties , 2013 .

[13]  Jens Leker,et al.  Current research trends and prospects among the various materials and designs used in lithium-based batteries , 2013, Journal of Applied Electrochemistry.

[14]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[15]  BRENT C. MELOT,et al.  Design and preparation of materials for advanced electrochemical storage. , 2013, Accounts of chemical research.

[16]  Guoying Chen,et al.  The effect of particle surface facets on the kinetic properties of LiMn1.5Ni0.5O4 cathode materials , 2013 .

[17]  J. Choi,et al.  A truncated manganese spinel cathode for excellent power and lifetime in lithium-ion batteries. , 2012, Nano letters.

[18]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[19]  A. Manthiram,et al.  Role of Cation Ordering and Surface Segregation in High-Voltage Spinel LiMn1.5Ni0.5–xMxO4 (M = Cr, Fe, and Ga) Cathodes for Lithium-Ion Batteries , 2012 .

[20]  Kai Xie,et al.  Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries , 2012 .

[21]  A. Manthiram,et al.  Role of Oxygen Vacancies on the Performance of Li[Ni0.5–xMn1.5+x]O4 (x = 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries , 2012 .

[22]  G. Graff,et al.  High‐Performance LiNi0.5Mn1.5O4 Spinel Controlled by Mn3+ Concentration and Site Disorder , 2012, Advanced materials.

[23]  Dan Wang,et al.  Recent advances in micro-/nano-structured hollow spheres for energy applications: From simple to complex systems , 2012 .

[24]  X. Lou,et al.  LiNi(0.5)Mn(1.5)O4 hollow structures as high-performance cathodes for lithium-ion batteries. , 2012, Angewandte Chemie.

[25]  Hyun‐Wook Lee,et al.  Facile synthesis and electrochemical performance of ordered LiNi0.5Mn1.5O4 nanorods as a high power positive electrode for rechargeable Li-ion batteries , 2011 .

[26]  R. Benedek,et al.  Simulation of the surface structure of lithium manganese oxide spinel , 2011 .

[27]  Isobel J. Davidson,et al.  Study of the LiMn1.5Ni0.5O4/Electrolyte Interface at Room Temperature and 60°C , 2011 .

[28]  R. Cloots,et al.  Well shaped Mn₃O₄ nano-octahedra with anomalous magnetic behavior and enhanced photodecomposition properties. , 2011, Small.

[29]  Arumugam Manthiram,et al.  Materials Challenges and Opportunities of Lithium-ion Batteries for Electrical Energy Storage , 2011 .

[30]  Kazuhisa Tamura,et al.  Dynamic structural changes at LiMn2O4/electrolyte interface during lithium battery reaction. , 2010, Journal of the American Chemical Society.

[31]  Rita Baddour-Hadjean,et al.  Raman microspectrometry applied to the study of electrode materials for lithium batteries. , 2010, Chemical reviews.

[32]  M. Niederberger,et al.  Microwave chemistry for inorganic nanomaterials synthesis. , 2010, Nanoscale.

[33]  Kwang Man Kim,et al.  Nanoparticle–Nanorod Core–Shell LiNi0.5Mn1.5O4 Spinel Cathodes with High Energy Density for Li-Ion Batteries , 2010 .

[34]  Yang-Kook Sun,et al.  Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries , 2010 .

[35]  P. Chu,et al.  Fast preparation of LiFePO4 nanoparticles for lithium batteries by microwave-assisted hydrothermal method. , 2010, Journal of nanoscience and nanotechnology.

[36]  F. Huang,et al.  Progress of nanocrystalline growth kinetics based on oriented attachment. , 2010, Nanoscale.

[37]  A. Manthiram,et al.  Kinetics Study of the 5 V Spinel Cathode LiMn1.5Ni0.5O4 Before and After Surface Modifications , 2009 .

[38]  D. Wolf,et al.  Crystallographic reorientation and nanoparticle coalescence , 2008 .

[39]  P. Bruce,et al.  Nano-LiNi(0.5)Mn(1.5)O(4) spinel: a high power electrode for Li-ion batteries. , 2008, Dalton transactions.

[40]  A. Yamada,et al.  Characterization of Electrode/Electrolyte Interface with X-Ray Reflectometry and Epitaxial-Film LiMn2O4 Electrode , 2007 .

[41]  Á. Caballero,et al.  Crystallinity Control of a Nanostructured LiNi0.5Mn1.5O4 Spinel via Polymer‐Assisted Synthesis: A Method for Improving Its Rate Capability and Performance in 5 V Lithium Batteries , 2006 .

[42]  S. C. Parker,et al.  Atomistic simulation of the surface energy of spinel MgAl2O4 , 2004 .

[43]  Hongyu Wang,et al.  Additives-containing functional electrolytes for suppressing electrolyte decomposition in lithium-ion batteries , 2004 .

[44]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[45]  Banfield,et al.  Imperfect oriented attachment: dislocation generation in defect-free nanocrystals , 1998, Science.

[46]  K. Amine,et al.  Preparation and electrochemical investigation of LiMn2 − xMexO4 (Me: Ni, Fe, and x = 0.5, 1) cathode materials for secondary lithium batteries , 1997 .

[47]  J. Dahn,et al.  Synthesis and Electrochemistry of LiNi x Mn2 − x O 4 , 1997 .