Function projective synchronization in drive–response dynamical networks with non-identical nodes☆

Abstract This paper investigates the problem of function projective synchronization (FPS) in drive–response dynamical networks (DRDNs) with non-identical nodes. Based on the adaptive open-plus-closed-loop (AOPCL) method, a general method of function projective synchronization is derived, which is robust to limited accuracy of data and effects of noise. Corresponding numerical simulations on the Lorenz system are performed to verify and illustrate the analytical results.

[1]  Luo Runzi,et al.  Adaptive function project synchronization of Rössler hyperchaotic system with uncertain parameters , 2008 .

[2]  J Lu Mathematical models and synchronization criterions of complex dynamical networks , 2004 .

[3]  E. Atlee Jackson,et al.  An open-plus-closed-loop (OPCL) control of complex dynamic systems , 1995 .

[4]  Yong Chen,et al.  FUNCTION PROJECTIVE SYNCHRONIZATION BETWEEN TWO IDENTICAL CHAOTIC SYSTEMS , 2007 .

[5]  Tianping Chen,et al.  Synchronization analysis for nonlinearly-coupled complex networks with an asymmetrical coupling matrix , 2008 .

[6]  Zhenyuan Xu,et al.  Function projective synchronization in drive–response dynamical network , 2010 .

[7]  Junan Lu,et al.  Pinning adaptive synchronization of a general complex dynamical network , 2008, Autom..

[8]  Guanrong Chen,et al.  A time-varying complex dynamical network model and its controlled synchronization criteria , 2004, IEEE Trans. Autom. Control..

[9]  S. Strogatz Exploring complex networks , 2001, Nature.

[10]  Jun Zhao,et al.  Global synchronization of complex dynamical networks with non-identical nodes , 2008, 2008 47th IEEE Conference on Decision and Control.

[11]  P. K. Roy,et al.  Designing coupling for synchronization and amplification of chaos. , 2008, Physical review letters.

[12]  Hongyue Du,et al.  Function projective synchronization of different chaotic systems with uncertain parameters , 2008 .

[13]  E. Ruiz-Velazquez,et al.  Synchronization in complex networks with distinct chaotic nodes , 2009 .

[14]  Chunguang Li,et al.  Synchronization in general complex dynamical networks with coupling delays , 2004 .

[15]  Guanrong Chen,et al.  Chaos synchronization of general complex dynamical networks , 2004 .

[16]  Jian-he Shen,et al.  An open-plus-closed-loop control for chaotic Mathieu-Duffing oscillator , 2009 .

[17]  Daizhan Cheng,et al.  Characterizing the synchronizability of small-world dynamical networks , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Hongyue Du,et al.  Modified function projective synchronization of chaotic system , 2009 .

[19]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[20]  E. Atlee Jackson,et al.  The OPCL control method for entrainment, model-resonance, and migration actions on multiple-attractor systems. , 1997, Chaos.

[21]  Ju H. Park,et al.  FURTHER RESULTS ON FUNCTIONAL PROJECTIVE SYNCHRONIZATION OF GENESIO–TESI CHAOTIC SYSTEM , 2009 .

[22]  K. Sudheer,et al.  Function projective synchronization in chaotic and hyperchaotic systems through open-plus-closed-loop coupling. , 2010, Chaos.

[23]  R. E. Amritkar,et al.  Characterization and control of small-world networks. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[24]  Hongyue Du,et al.  Function projective synchronization in coupled chaotic systems , 2010 .