Silicon CMOS architecture for a spin-based quantum computer

Recent advances in quantum error correction codes for fault-tolerant quantum computing and physical realizations of high-fidelity qubits in multiple platforms give promise for the construction of a quantum computer based on millions of interacting qubits. However, the classical-quantum interface remains a nascent field of exploration. Here, we propose an architecture for a silicon-based quantum computer processor based on complementary metal-oxide-semiconductor (CMOS) technology. We show how a transistor-based control circuit together with charge-storage electrodes can be used to operate a dense and scalable two-dimensional qubit system. The qubits are defined by the spin state of a single electron confined in quantum dots, coupled via exchange interactions, controlled using a microwave cavity, and measured via gate-based dispersive readout. We implement a spin qubit surface code, showing the prospects for universal quantum computation. We discuss the challenges and focus areas that need to be addressed, providing a path for large-scale quantum computing.Realisation of large-scale quantum computation requires both error correction capability and a large number of qubits. Here, the authors propose to use a CMOS-compatible architecture featuring a spin qubit surface code and individual qubit control via floating memory gate electrodes.

[1]  Mark Friesen,et al.  Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. , 2014, Nature nanotechnology.

[2]  Jacob M. Taylor,et al.  Circuit quantum electrodynamics with a spin qubit , 2012, Nature.

[3]  H. Lu,et al.  Frequency multiplexing for readout of spin qubits , 2013, 1312.5064.

[4]  Y. Wang,et al.  Quantum error correction in a solid-state hybrid spin register , 2013, Nature.

[5]  M. Veldhorst,et al.  Spin-orbit coupling and operation of multivalley spin qubits , 2015, 1505.01213.

[6]  J. Petta,et al.  Radio frequency charge parity meter. , 2012, Physical review letters.

[7]  David Reilly,et al.  Engineering the quantum-classical interface of solid-state qubits , 2015, npj Quantum Information.

[8]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[9]  Andrew S. Dzurak,et al.  Logical Qubit in a Linear Array of Semiconductor Quantum Dots , 2016, Physical Review X.

[10]  Gerald Cibrario,et al.  Opportunities brought by sequential 3D CoolCube™ integration , 2016, 2016 46th European Solid-State Device Research Conference (ESSDERC).

[11]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[12]  Gerhard Klimeck,et al.  Silicon quantum processor with robust long-distance qubit couplings , 2015, Nature Communications.

[13]  J. P. Dehollain,et al.  An addressable quantum dot qubit with fault-tolerant control-fidelity. , 2014, Nature nanotechnology.

[14]  Saeed Fallahi,et al.  Noise Suppression Using Symmetric Exchange Gates in Spin Qubits. , 2015, Physical review letters.

[15]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[16]  Zhan Shi,et al.  Quantum control and process tomography of a semiconductor quantum dot hybrid qubit , 2014, Nature.

[17]  S T Merkel,et al.  Supplemental Materials : Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation , 2016 .

[18]  Amir Yacoby,et al.  Long-Distance Spin-Spin Coupling via Floating Gates , 2011, Physical Review X.

[19]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[20]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[21]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[22]  M. Beck,et al.  Dipole coupling of a double quantum dot to a microwave resonator. , 2011, Physical review letters.

[23]  R. Schoelkopf,et al.  The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer , 1998, Science.

[24]  Konstantin K. Likharev,et al.  Single‐electron transistor logic , 1996 .

[25]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[26]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[27]  Gerhard Klimeck,et al.  Spin-valley lifetimes in a silicon quantum dot with tunable valley splitting , 2013, Nature Communications.

[28]  A. G. Fowler,et al.  Two-dimensional architectures for donor-based quantum computing , 2006 .

[29]  M. F. Gonzalez-Zalba,et al.  Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor. , 2015, Nano letters.

[30]  J I Colless,et al.  Dispersive readout of a few-electron double quantum dot with fast RF gate sensors. , 2012, Physical review letters.

[31]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[32]  L. Vandersypen,et al.  Single-spin CCD. , 2015, Nature nanotechnology.

[33]  M. J. Kelly,et al.  Multiplexed Charge-locking Device for Large Arrays of Quantum Devices , 2014, 1408.2872.

[34]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[35]  J. P. Dehollain,et al.  Storing quantum information for 30 seconds in a nanoelectronic device. , 2014, Nature nanotechnology.

[36]  Michelle Y. Simmons,et al.  A surface code quantum computer in silicon , 2015, Science Advances.

[37]  Adele E. Schmitz,et al.  Coherent singlet-triplet oscillations in a silicon-based double quantum dot , 2012, Nature.

[38]  Jan Meijer,et al.  High-fidelity spin entanglement using optimal control , 2013, Nature Communications.

[39]  L. Vandersypen,et al.  Single-shot read-out of an individual electron spin in a quantum dot , 2004, Nature.

[40]  G. Pica,et al.  Surface code architecture for donors and dots in silicon with imprecise and nonuniform qubit couplings , 2015, 1506.04913.

[41]  J. P. Dehollain,et al.  A two-qubit logic gate in silicon , 2014, Nature.

[42]  Jacob M. Taylor,et al.  Self-consistent measurement and state tomography of an exchange-only spin qubit. , 2013, Nature nanotechnology.

[43]  Joe O'Gorman,et al.  A silicon-based surface code quantum computer , 2014, npj Quantum Information.

[44]  M. F. Gonzalez-Zalba,et al.  Quantum and tunneling capacitance in charge and spin qubits , 2016, 1604.02884.

[45]  P. Barthelemy,et al.  Long-distance coherent coupling in a quantum dot array. , 2013, Nature nanotechnology.