Molecular Network Analysis and Applications

In the post-genomic era of systems biology, the cell itself can be viewed as a complex network of interacting proteins, nucleic acids, and other biomolecules (Hartwell et al., 1999; Eisenberg et al., 2000). Graph representation adopted from mathematics and computer science has been widely applied to describe various molecular systems including protein interaction maps, metabolites and reactions, transcriptional regulation maps, signal transduction pathways, and functional association networks (Barabasi and Oltvai, 2004; Girvan and Newman, 2002; Tong et al., 2004; Balazsi et al., 2005). Applications based on network analysis have been proven useful in areas such as predicting protein functions, identifying targets for structural genomics, facilitating drug discovery and design, and expe­ diting novel biomarker identification (Sharan et al., 2007; Chuang et al., 2007; Hopkins, 2008; Huang et al., 2008). In the first four sections of this chapter, we will review four types of commonly conducted network analyses on large-scale molecular networks and their applications: (1) Topology analysis focuses on the characterization of global network structures using quantitative measures, or network statistics. The applications of topology analysis include important node identification

[1]  Z N Oltvai,et al.  Evolutionary conservation of motif constituents in the yeast protein interaction network , 2003, Nature Genetics.

[2]  A. Barabasi,et al.  High-Quality Binary Protein Interaction Map of the Yeast Interactome Network , 2008, Science.

[3]  Alexander Rives,et al.  Modular organization of cellular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[5]  M. Kanehisa,et al.  A heuristic graph comparison algorithm and its application to detect functionally related enzyme clusters. , 2000, Nucleic acids research.

[6]  Mario Vento,et al.  Thirty Years Of Graph Matching In Pattern Recognition , 2004, Int. J. Pattern Recognit. Artif. Intell..

[7]  Jacques van Helden,et al.  Network Analysis Tools: from biological networks to clusters and pathways , 2008, Nature Protocols.

[8]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[9]  D. Fell,et al.  The small world inside large metabolic networks , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[10]  M. Tyers,et al.  Osprey: a network visualization system , 2003, Genome Biology.

[11]  Alain Guénoche,et al.  Clustering proteins from interaction networks for the prediction of cellular functions , 2004, BMC Bioinformatics.

[12]  Jacques van Helden,et al.  Evaluation of clustering algorithms for protein-protein interaction networks , 2006, BMC Bioinformatics.

[13]  Ignacio Marín,et al.  Iterative Cluster Analysis of Protein Interaction Data , 2005, Bioinform..

[14]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[15]  Thomas J. Begley,et al.  Global network analysis of phenotypic effects: Protein networks and toxicity modulation in Saccharomyces cerevisiae , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[16]  David Botstein,et al.  SGD: Saccharomyces Genome Database , 1998, Nucleic Acids Res..

[17]  Bonnie Berger,et al.  IsoRankN: spectral methods for global alignment of multiple protein networks , 2009, Bioinform..

[18]  Kevin Y Yip,et al.  Comparing classical pathways and modern networks: towards the development of an edge ontology. , 2007, Trends in biochemical sciences.

[19]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[20]  Paula D. Bos,et al.  Mediators of vascular remodelling co-opted for sequential steps in lung metastasis , 2007, Nature.

[21]  Mark Gerstein,et al.  The tYNA platform for comparative interactomics: a web tool for managing, comparing and mining multiple networks , 2006, Bioinform..

[22]  Z. N. Oltvai,et al.  Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Karp,et al.  From the Cover : Conserved patterns of protein interaction in multiple species , 2005 .

[24]  G. Wagner,et al.  The road to modularity , 2007, Nature Reviews Genetics.

[25]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[26]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[27]  Kesheng Liu,et al.  Information Flow Analysis of Interactome Networks , 2009, PLoS Comput. Biol..

[28]  M. Gerstein,et al.  Genomic analysis of regulatory network dynamics reveals large topological changes , 2004, Nature.

[29]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[30]  Liang Tong,et al.  Targeting the Human Cancer Pathway Protein Interaction Network by Structural Genomics* , 2008, Molecular & Cellular Proteomics.

[31]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[33]  Huey-Ling Kao,et al.  Browsing Multidimensional Molecular Networks with the Generic Network Browser (N‐Browse) , 2008, Current protocols in bioinformatics.

[34]  S. L. Wong,et al.  Towards a proteome-scale map of the human protein–protein interaction network , 2005, Nature.

[35]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[36]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[37]  Yan Wang,et al.  VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology , 2009, Nucleic Acids Res..

[38]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[39]  Anton J. Enright,et al.  An efficient algorithm for large-scale detection of protein families. , 2002, Nucleic acids research.

[40]  A. Hopkins Network pharmacology: the next paradigm in drug discovery. , 2008, Nature chemical biology.

[41]  M. Samanta,et al.  Predicting protein functions from redundancies in large-scale protein interaction networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[42]  A. Hopkins Network pharmacology , 2007, Nature Biotechnology.

[43]  T. Takagi,et al.  Assessment of prediction accuracy of protein function from protein–protein interaction data , 2001, Yeast.

[44]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Mark Gerstein,et al.  The Importance of Bottlenecks in Protein Networks: Correlation with Gene Essentiality and Expression Dynamics , 2007, PLoS Comput. Biol..

[46]  Jingchun Chen,et al.  Detecting functional modules in the yeast protein-protein interaction network , 2006, Bioinform..

[47]  Réka Albert,et al.  Conserved network motifs allow protein-protein interaction prediction , 2004, Bioinform..

[48]  S. L. Wong,et al.  Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network , 2005, Journal of biology.

[49]  A. Fraser,et al.  A first-draft human protein-interaction map , 2004, Genome Biology.

[50]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[51]  Alessandro Vespignani,et al.  Global protein function prediction from protein-protein interaction networks , 2003, Nature Biotechnology.

[52]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[53]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[54]  B. Snel,et al.  Comparative assessment of large-scale data sets of protein–protein interactions , 2002, Nature.

[55]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[56]  L. Mirny,et al.  Protein complexes and functional modules in molecular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[58]  Jianmin Wu,et al.  Integrated network analysis platform for protein-protein interactions , 2009, Nature Methods.

[59]  Aidong Zhang,et al.  A novel functional module detection algorithm for protein-protein interaction networks , 2006, Algorithms for Molecular Biology.

[60]  Mark Gerstein,et al.  Analyzing cellular biochemistry in terms of molecular networks. , 2003, Annual review of biochemistry.

[61]  Bonnie Berger,et al.  Global alignment of multiple protein interaction networks with application to functional orthology detection , 2008, Proceedings of the National Academy of Sciences.

[62]  Dmitrij Frishman,et al.  MIPS: a database for genomes and protein sequences , 2000, Nucleic Acids Res..

[63]  R. Milo,et al.  Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Bu,et al.  Topological structure analysis of the protein-protein interaction network in budding yeast. , 2003, Nucleic acids research.

[65]  R. Solé,et al.  Evolving protein interaction networks through gene duplication. , 2003, Journal of theoretical biology.

[66]  Albert-László Barabási,et al.  Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network , 2004, BMC Bioinformatics.

[67]  Michael E. Cusick,et al.  The Yeast Proteome Database (YPD) and Caenorhabditis elegans Proteome Database (WormPD): comprehensive resources for the organization and comparison of model organism protein information , 2000, Nucleic Acids Res..

[68]  Luonan Chen,et al.  Network‐Based Prediction of Protein Function , 2009 .

[69]  Limsoon Wong,et al.  Exploiting Indirect Neighbours and Topological Weight to Predict Protein Function from Protein-Protein Interactions , 2006, BioDM.

[70]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[71]  Massimo Marchiori,et al.  Error and attacktolerance of complex network s , 2004 .

[72]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[73]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[74]  P. Bork,et al.  Dynamic Complex Formation During the Yeast Cell Cycle , 2005, Science.

[75]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[76]  Ron Y. Pinter,et al.  Alignment of metabolic pathways , 2005, Bioinform..

[77]  Mark Gerstein,et al.  The tYNA platform for comparative interactomics: a web tool for managing, comparing and mining multiple networks , 2006, Bioinform..

[78]  Shi-Hua Zhang,et al.  Identification of functional modules in a PPI network by clique percolation clustering , 2006, Comput. Biol. Chem..

[79]  J. Foekens,et al.  Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer , 2005, The Lancet.

[80]  Illés J. Farkas,et al.  CFinder: locating cliques and overlapping modules in biological networks , 2006, Bioinform..

[81]  T. Ideker,et al.  Network-based classification of breast cancer metastasis , 2007, Molecular systems biology.

[82]  中尾 光輝,et al.  KEGG(Kyoto Encyclopedia of Genes and Genomes)〔和文〕 (特集 ゲノム医学の現在と未来--基礎と臨床) -- (データベース) , 2000 .

[83]  A. Barabasi,et al.  Functional and topological characterization of protein interaction networks , 2004, Proteomics.

[84]  S. Shen-Orr,et al.  Network motifs in the transcriptional regulation network of Escherichia coli , 2002, Nature Genetics.

[85]  S. Kasif,et al.  Whole-genome annotation by using evidence integration in functional-linkage networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Limsoon Wong,et al.  Exploiting indirect neighbours and topological weight to predict protein function from protein--protein interactions , 2006 .

[87]  T. Ideker,et al.  Systematic interpretation of genetic interactions using protein networks , 2005, Nature Biotechnology.

[88]  R. Sharan,et al.  Network-based prediction of protein function , 2007, Molecular systems biology.

[89]  S. Havlin,et al.  Scale-free networks are ultrasmall. , 2002, Physical review letters.

[90]  M E J Newman,et al.  Community structure in social and biological networks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[91]  Igor Jurisica,et al.  Protein complex prediction via cost-based clustering , 2004, Bioinform..

[92]  R. Milo,et al.  Topological generalizations of network motifs. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[93]  D. Eisenberg,et al.  Protein function in the post-genomic era , 2000, Nature.

[94]  Paul A. Bates,et al.  Global topological features of cancer proteins in the human interactome , 2006, Bioinform..

[95]  T. Ideker,et al.  Modeling cellular machinery through biological network comparison , 2006, Nature Biotechnology.

[96]  Erzsébet Ravasz,et al.  Detecting hierarchical modularity in biological networks. , 2009, Methods in molecular biology.

[97]  W. Holzgreve,et al.  Genes controlling spread of breast cancer to lung "gang of 4". , 2008, Experimental oncology.

[98]  Charles Auffray,et al.  Protein subnetwork markers improve prediction of cancer outcome , 2007, Molecular systems biology.

[99]  Frank Dudbridge,et al.  The Use of Edge-Betweenness Clustering to Investigate Biological Function in Protein Interaction Networks , 2005, BMC Bioinformatics.

[100]  R. Karp,et al.  Conserved pathways within bacteria and yeast as revealed by global protein network alignment , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Lan Chen,et al.  Dynamic Changes in Subgraph Preference Profiles of Crucial Transcription Factors , 2006, PLoS Comput. Biol..

[102]  Ioannis Xenarios,et al.  DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions , 2002, Nucleic Acids Res..

[103]  Vladimir Batagelj,et al.  Analysis of Kinship Relations With Pajek , 2008 .

[104]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[105]  Shigehiko Kanaya,et al.  Development and implementation of an algorithm for detection of protein complexes in large interaction networks , 2006, BMC Bioinformatics.

[106]  Teresa M. Przytycka,et al.  Decomposition of Overlapping Protein Complexes: A Graph Theoretical Method for Analyzing Static and Dynamic Protein Associations , 2005, Systems Biology and Regulatory Genomics.