Pixon-based image segmentation with Markov random fields

Image segmentation is an essential processing step for many image analysis applications. We propose a novel pixon-based adaptive scale method for image segmentation. The key idea of our approach is that a pixon-based image model is combined with a Markov random field (MRF) model under a Bayesian framework. We introduce a new pixon scheme that is more suitable for image segmentation than the "fuzzy" pixon scheme. The anisotropic diffusion equation is successfully used to form the pixons in our new pixon scheme. Experimental results demonstrate that our algorithm performs fairly well and computational costs decrease dramatically compared with the pixel-based MRF algorithm.

[1]  Xavier Descombes,et al.  A Markov Pixon Information Approach for Low-Level Image Description , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  G.B. Coleman,et al.  Image segmentation by clustering , 1979, Proceedings of the IEEE.

[5]  D Cvijovicacute,et al.  Taboo search: an approach to the multiple minima problem. , 1995, Science.

[6]  Ibrahim M. Elfadel,et al.  Gibbs Random Fields, Cooccurrences, and Texture Modeling , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Laveen N. Kanal,et al.  Classification of binary random patterns , 1965, IEEE Trans. Inf. Theory.

[8]  J. Snell,et al.  On the relation between Markov random fields and social networks , 1980 .

[9]  Robert K. Pina,et al.  BAYESIAN IMAGE RECONSTRUCTION: THE PIXON AND OPTIMAL IMAGE MODELING , 1993 .

[10]  Supun Samarasekera,et al.  Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation , 1996, CVGIP Graph. Model. Image Process..

[11]  Anil K. Jain,et al.  Random field models in image analysis , 1989 .

[12]  Philippe Andrey,et al.  Unsupervised Segmentation of Markov Random Field Modeled Textured Images Using Selectionist Relaxation , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Jun Zhang,et al.  A Markov random field model-based approach to image interpretation , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Josiane Zerubia,et al.  Unsupervised parallel image classification using Markovian models , 1999, Pattern Recognit..

[16]  L O Hall,et al.  Review of MR image segmentation techniques using pattern recognition. , 1993, Medical physics.

[17]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[18]  Anil K. Jain,et al.  Markov Random Field Texture Models , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Haluk Derin,et al.  Modeling and Segmentation of Noisy and Textured Images Using Gibbs Random Fields , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Hyun Seung Yang,et al.  A systematic way for region-based image segmentation based on Markov Random Field model , 1994, Pattern Recognit. Lett..

[21]  Soon Myoung Chung,et al.  A new image segmentation technique based on partition mode test , 1983, Pattern Recognit..

[22]  Anjan Sarkar,et al.  A simple unsupervised MRF model based image segmentation approach , 2000, IEEE Trans. Image Process..

[23]  Jagath C. Rajapakse,et al.  Statistical approach to segmentation of single-channel cerebral MR images , 1997, IEEE Transactions on Medical Imaging.

[24]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[25]  F. Spitzer Markov Random Fields and Gibbs Ensembles , 1971 .

[26]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[27]  Victor M. Brea,et al.  Discrete-time CNN for image segmentation by active contours , 1998, Pattern Recognit. Lett..

[28]  Tianzi Jiang,et al.  Pixon-based image denoising with Markov random fields , 2001, Pattern Recognit..

[29]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[30]  Sridhar Lakshmanan,et al.  Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  R. C. Puetter,et al.  Pixon‐based multiresolution image reconstruction and the quantification of picture information content , 1995, Int. J. Imaging Syst. Technol..

[33]  Jacek Klinowski,et al.  Taboo Search: An Approach to the Multiple Minima Problem , 1995, Science.

[34]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.