Boutiques: a flexible framework to integrate command-line applications in computing platforms

We present Boutiques, a system to automatically publish, integrate and execute applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitate the construction, validation, import, execution, and publishing of applications. Boutiques is currently supported by several distinct virtual research platforms, and it has been used to describe dozens of applications in the neuroinformatics domain. We expect Boutiques to improve the quality of application integration in computational platforms, to reduce redundancy of effort, to contribute to computational reproducibility, and to foster Open Science.

[1]  Ron Kikinis,et al.  3D Slicer , 2012, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[2]  Gábor Terstyánszky,et al.  GEMLCA: Running Legacy Code Applications as Grid Services , 2005, Journal of Grid Computing.

[3]  Thies H Jochimsen,et al.  ODIN-object-oriented development interface for NMR. , 2004, Journal of magnetic resonance.

[4]  Johan Montagnat,et al.  Flexible and Efficient Workflow Deployment of Data-Intensive Applications On Grids With MOTEUR , 2008, Int. J. High Perform. Comput. Appl..

[5]  Alan C. Evans,et al.  The pipeline system for Octave and Matlab (PSOM): a lightweight scripting framework and execution engine for scientific workflows , 2012, Front. Neuroinform..

[6]  Tristan Glatard,et al.  CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research , 2014, Front. Neuroinform..

[7]  Tristan Glatard,et al.  Software architectures to integrate workflow engines in science gateways , 2017, Future Gener. Comput. Syst..

[8]  Heinz-Otto Peitgen,et al.  Object-oriented application development with MeVisLab and Python , 2009, GI Jahrestagung.

[9]  Yolanda Gil,et al.  Enhancing reproducibility for computational methods , 2016, Science.

[10]  Klaus H. Maier-Hein,et al.  The Medical Imaging Interaction Toolkit: challenges and advances , 2013, International Journal of Computer Assisted Radiology and Surgery.

[11]  Disa Mhembere,et al.  A Comprehensive Cloud Framework for Accurate and Reliable Human Connectome Estimation and Meganalysis , 2017 .

[12]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[13]  R. Peng Reproducible Research in Computational Science , 2011, Science.

[14]  Tristan Glatard,et al.  The MNI data-sharing and processing ecosystem , 2016, NeuroImage.

[15]  Alejandro F. Frangi,et al.  GIMIAS: An Open Source Framework for Efficient Development of Research Tools and Clinical Prototypes , 2009, FIMH.

[16]  Gábor Terstyánszky,et al.  Enabling scientific workflow sharing through coarse-grained interoperability , 2014, Future Gener. Comput. Syst..

[17]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[18]  Johan Montagnat,et al.  A data-driven workflow language for grids based on array programming principles , 2009, WORKS '09.

[19]  Satrajit S. Ghosh,et al.  Nipype: A Flexible, Lightweight and Extensible Neuroimaging Data Processing Framework in Python , 2011, Front. Neuroinform..

[20]  Vince D. Calhoun,et al.  A High-Throughput Pipeline Identifies Robust Connectomes But Troublesome Variability , 2017, bioRxiv.

[21]  Vanessa Sochat,et al.  Singularity: Scientific containers for mobility of compute , 2017, PloS one.

[22]  Johan Montagnat,et al.  A Virtual Imaging Platform for Multi-Modality Medical Image Simulation , 2013, IEEE Transactions on Medical Imaging.

[23]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[24]  Satrajit S. Ghosh,et al.  BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods , 2016, bioRxiv.

[25]  Andrea Bergmann,et al.  Statistical Parametric Mapping The Analysis Of Functional Brain Images , 2016 .