3D Relativistic Hydrodynamic Computations Using Lattice-QCD-Inspired Equations of State

[1]  T. Kodama,et al.  Topics on Hydrodynamic Model of Nucleus-Nucleus Collisions , 2004, hep-ph/0407264.

[2]  E. al.,et al.  Bose-Einstein correlations of charged pion pairs in Au+Au collisions at root(NN)-N-s = 200 GeV , 2004, nucl-ex/0401003.

[3]  C. Henderson,et al.  Pseudorapidity distribution of charged particles in d+Au collisions at sqrt[sNN]=200 GeV. , 2003, Physical review letters.

[4]  S. Ostapchenko,et al.  Initial condition for quark-gluon plasma evolution , 2002 .

[5]  Z. Fodor,et al.  Lattice determination of the critical point of QCD at finite T and μ , 2001, hep-lat/0106002.

[6]  F. Karsch Lattice results on QCD thermodynamics , 2001, hep-ph/0103314.

[7]  T. Kodama,et al.  Entropy-based relativistic smoothed particle hydrodynamics , 2001 .

[8]  C. Nonaka,et al.  (3+1)-dimensional relativistic hydrodynamical expansion of hot and dense matter in ultra-relativistic nuclear collision , 2000, hep-ph/0007187.

[9]  T. Kodama,et al.  Smoothed particle hydrodynamics for relativistic heavy-ion collisions , 2000, hep-ph/0006239.

[10]  M. Gyulassy,et al.  Hot spots and turbulent initial conditions of quark - gluon plasmas in nuclear collisions , 1996, nucl-th/9609030.

[11]  T. Kodama,et al.  Continuous particle emission: a probe of thermalized matter evolution? , 1995 .

[12]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[13]  B. R. Schlei,et al.  Predictions for {radical} (s) =200A; GeV Au+Au collisions from relativistic hydrodynamics , 1999 .