Nonexistence of a class of variate generation schemes

Motivated by a problem arising in the regenerative analysis of discrete-event system simulation, we ask whether a certain class of random variate generation schemes exists or not. Under very reasonable conditions, we prove that such variate generation schemes do not exist. The implications of this result for regenerative steady-state simulation of discrete-event systems are discussed.

[1]  George L. O'Brien,et al.  A Bernoulli factory , 1994, TOMC.

[2]  E. Nummelin,et al.  A splitting technique for Harris recurrent Markov chains , 1978 .

[3]  Karl Sigman,et al.  One-Dependent Regenerative Processes and Queues in Continuous Time , 1990, Math. Oper. Res..

[4]  K. Athreya,et al.  A New Approach to the Limit Theory of Recurrent Markov Chains , 1978 .

[5]  S. Asmussen,et al.  Applied Probability and Queues , 1989 .

[6]  Gerald S. Shedler Regenerative Stochastic Simulation , 1992 .

[7]  P. Glynn,et al.  Likelihood ratio gradient estimation for stochastic recursions , 1995, Advances in Applied Probability.

[8]  Peter W. Glynn,et al.  Stationarity detection in the initial transient problem , 1992, TOMC.

[9]  P. Glynn,et al.  Limit Theory for Performance Modeling of Future Event Set Algorithms , 1998 .

[10]  A. W. Kemp,et al.  Applied Probability and Queues , 1989 .

[11]  K. Sigman Regeneration in tandem queues with multiserver stations , 1988, Journal of Applied Probability.

[12]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[13]  P. Glynn,et al.  Can the regenerative method be applied to discrete-event simulation? , 1999, WSC'99. 1999 Winter Simulation Conference Proceedings. 'Simulation - A Bridge to the Future' (Cat. No.99CH37038).

[14]  E. V. Morozov,et al.  Simulation of queueing processes based on weak regeneration , 1998 .

[15]  E. V. Morozov,et al.  Weak regenerative structure of an open Jackson queueing network , 1998 .

[16]  P. Haas On simulation output analysis for generalized semi-markov processes , 1999 .

[17]  P. Glynn Some topics in regenerative steady-state simulation , 1994 .

[18]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[19]  Peter W. Glynn,et al.  Regenerative steady-state simulation of discrete-event systems , 2001, TOMC.

[20]  Evsey Morozov,et al.  On steady-state simulation of some weak regenerative networks , 2002, Eur. Trans. Telecommun..

[21]  P. Spreij Probability and Measure , 1996 .