Computational Fluid Dynamics and Visualisation of Coastal Flows in Tidal Channels Supporting Ocean Energy Development

Flow characteristics in coastal regions are strongly influenced by the topography of the seabed and understanding the fluid dynamics is necessary before installation of tidal stream turbines (TST). In this paper, the bathymetry of a potential TST deployment site is used in the development of the a CFD (Computational Fluid Dynamics) model. The steady state k-ϵ and transient Large Eddy Simulation (LES) turbulence methods are employed and compared. The simulations are conducted with a fixed representation of the ocean surface, i.e., a rigid lid representation. In the vicinity of Horse Rock a study of the pressure difference shows that the small change in height of the water column is negligible, providing confidence in the simulation results. The stream surface method employed to visualise the results has important inherent characteristics that can enhance the visual perception of complex flow structures. The results of all cases are compared with the flow data transect gathered by an Acoustic Doppler Current Profiler (ADCP). It has been understood that the k-ϵ method can predict the flow pattern relatively well near the main features of the domain and the LES model has the ability to simulate some important flow patterns caused by the bathymetry.

[1]  S. Wakes,et al.  Modeling of Surface Roughness for Flow Over a Complex Vegetated Surface , 2007 .

[2]  Zhihua Xie,et al.  Turbulence characteristics in free-surface flow over two-dimensional dunes , 2014 .

[3]  Thorsten Stoesser,et al.  Turbulence statistics in an open-channel flow over a rough bed , 2011 .

[4]  Roger Alexander Falconer,et al.  Physical and numerical modelling of the Severn Barrage , 2014 .

[5]  Changsheng Chen,et al.  An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries , 2003 .

[6]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[7]  Alison Williams,et al.  A Numerical Investigation Into Tidal Stream Turbine Wake Dynamics And Device Performance In Non-Uniform Flows , 2012 .

[8]  R. Mazo On the theory of brownian motion , 1973 .

[9]  Alfred Wüest,et al.  Application of coherent ADCP for turbulence measurements in the bottom boundary layer , 2005 .

[10]  Robert S. Laramee,et al.  Surface-based flow visualization , 2012, Comput. Graph..

[11]  B. Launder,et al.  Mathematical Models of turbulence , 1972 .

[12]  Ian Masters,et al.  Incorporating Turbulent Inflow Conditions In a Blade Element Momentum Model of Tidal Stream Turbines , 2011 .

[13]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[14]  N Jarrin,et al.  Synthetic turbulent inflow conditions based on a vortex method for large-eddy simulation , 2006 .

[15]  Robert S. Laramee,et al.  Design of a Flow Visualisation Framework , 2015, Comput..

[16]  Rajnish N. Sharma,et al.  Characteristics of the turbulence in the flow at a tidal stream power site , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  D. O'Doherty,et al.  Constraints on extractable power from energetic tidal straits , 2015 .

[18]  Paul Mycek,et al.  Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines , 2014 .

[19]  Thorsten Stoesser,et al.  Turbulence Structures in Flow over Two-Dimensional Dunes , 2008 .

[20]  S. Benhamadouche,et al.  A synthetic-eddy-method for generating inflow conditions for large-eddy simulations , 2006 .

[21]  V. C. Patel,et al.  Large-Eddy Simulation of Turbulent Flow over a Fixed Two-Dimensional Dune , 2006 .

[22]  A. Bahaj,et al.  Tidal energy resource assessment for tidal stream generators , 2007 .

[23]  Jacques Hureau,et al.  Rotational and turbulence effects on a wind turbine blade. Investigation of the stall mechanisms , 2008 .

[24]  Ian Masters,et al.  A robust blade element momentum theory model for tidal stream turbines including tip and hub loss corrections , 2011 .

[25]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[26]  P. Fraenkel,et al.  Tidal and river current energy systems , 1979 .

[27]  Roger Alexander Falconer,et al.  Hydro-environmental modeling of the proposed Severn barrage , 2010 .

[28]  Nicole Goutal,et al.  TELEMAC: A new numerical model for solving shallow water equations , 1991 .

[29]  I. Fairley,et al.  Characterisation of a Highly Energetic Tidal Energy Site with Specific Reference to Hydrodynamics and Bathymetry , 2013 .

[30]  Witold Elsner,et al.  LES modeling of converging-diverging turbulent channel flow , 2012 .

[31]  T. N. Croft,et al.  The influence of flow acceleration on tidal stream turbine wake dynamics: A numerical study using a coupled BEM–CFD model , 2013 .

[32]  D. Sandwell BIHARMONIC SPLINE INTERPOLATION OF GEOS-3 AND SEASAT ALTIMETER DATA , 1987 .

[33]  P. Mazur On the theory of brownian motion , 1959 .

[34]  Dimitri V. Val,et al.  Reliability analysis of rotor blades of tidal stream turbines , 2014, Reliab. Eng. Syst. Saf..

[35]  D. Carati,et al.  Large-eddy simulation , 2000 .

[36]  M. R. Willis,et al.  Evaluation of tidal stream resource in a potential array area via direct measurements , 2013 .

[37]  R. M. C. So,et al.  A critical evaluation of near-wall two-equation models against direct numerical simulation data , 1997 .

[38]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[39]  E. Sergent,et al.  Vers une méthodologie de couplage entre la simulation des grandes échelles et les modèles statistiques , 2002 .

[40]  W. Jones,et al.  The prediction of laminarization with a two-equation model of turbulence , 1972 .

[41]  D. Wilcox Turbulence modeling for CFD , 1993 .

[42]  J. Spurk Boundary Layer Theory , 2019, Fluid Mechanics.

[43]  Youyu Lu,et al.  Using a Broadband ADCP in a Tidal Channel. Part II: Turbulence , 1999 .

[44]  Robert S. Laramee,et al.  Automatic Stream Surface Seeding: A Feature Centered Approach , 2012, Comput. Graph. Forum.