Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE
暂无分享,去创建一个
[1] Ing Rj Ser. Approximation Theorems of Mathematical Statistics , 1980 .
[2] G. Micula,et al. Numerical Treatment of the Integral Equations , 1999 .
[3] J. B. Copas,et al. On the unimodality of the likelihood for the Cauchy distribution , 1975 .
[4] T. W. Anderson,et al. Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .
[5] Über Entwicklungen gegebener Funktionen nach Eigenfunktionen von Randwertaufgaben , 1928 .
[6] N. Henze,et al. Goodness-of-Fit Tests for the Cauchy Distribution Based on the Empirical Characteristic Function , 2000 .
[7] Katsuto Tanaka,et al. Time Series Analysis: Nonstationary and Noninvertible Distribution Theory , 1996 .
[8] Byron J. T. Morgan,et al. Integrated squared error estimation of Cauchy parameters , 2001 .
[9] Geoffrey S. Watson,et al. Distribution Theory for Tests Based on the Sample Distribution Function , 1973 .
[10] Joseph L. Gastwirth,et al. Asymptotic Distribution of Linear Combinations of Functions of Order Statistics with Applications to Estimation , 1967 .
[11] S. Csörgo. Kernel-transformed empirical processes , 1983 .
[12] Ralph B. D'Agostino,et al. Goodness-of-Fit-Techniques , 2020 .
[13] D. Slepian. Fluctuations of random noise power , 1958 .
[14] James Durbin,et al. Weak convergence of the sample distribution function when parameters are estimated , 1973 .