Computational advances in gravitational microlensing: A comparison of CPU, GPU, and parallel, large data codes
暂无分享,去创建一个
B. R. Barsdell | C. J. Fluke | H. Garsden | G. F. Lewis | G. Lewis | C. Fluke | B. Barsdell | H. Garsden | N. Bate | N. F. Bate | G. F. Lewis
[1] Peter Schneider,et al. Gravitational Lensing: Strong, Weak and Micro , 2006 .
[2] Suresh Venkatasubramanian. The Graphics Card as a Streaming Computer , 2003, ArXiv.
[3] Paul L. Schechter,et al. THE DARK-MATTER FRACTION IN THE ELLIPTICAL GALAXY LENSING THE QUASAR PG 1115+080 , 2008, 0808.3299.
[4] P. J. Quinn,et al. Possible gravitational microlensing of a star in the Large Magellanic Cloud , 1993, Nature.
[5] Stanimire Tomov,et al. Benchmarking and implementation of probability-based simulations on programmable graphics cards , 2003, Comput. Graph..
[6] S. Capozziello,et al. Microlensing search towards M 31 , 2001, astro-ph/0110706.
[7] B. Monard,et al. A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: Cold neptunes are common , 2009, 0912.1171.
[8] D. Long,et al. The multiple quasar Q2237+0305 under a microlensing caustic , 2007, 0711.4265.
[9] R. Webster,et al. The accretion disc in the quasar SDSS J0924+0219★ , 2009, 0905.2651.
[10] L. Vigroux,et al. Evidence for gravitational microlensing by dark objects in the Galactic halo , 1993, Nature.
[11] Astrophysics,et al. THE SIZES OF THE X-RAY AND OPTICAL EMISSION REGIONS OF RXJ 1131–1231 , 2009, The Astrophysical Journal.
[12] E. Falco,et al. MICROLENSING-BASED ESTIMATE OF THE MASS FRACTION IN COMPACT OBJECTS IN LENS GALAXIES , 2009, 0910.3645.
[13] S. Refsdal,et al. Flux variations of QSO 0957 + 561 A, B and image splitting by stars near the light path , 1979, Nature.
[14] Eric B. Ford,et al. Parallel algorithm for solving Kepler’s equation on Graphics Processing Units: Application to analysis of Doppler exoplanet searches , 2008, 0812.2976.
[15] T. O. S. University,et al. Microlensing of the Lensed Quasar SDSS 0924+0219* , 2006, astro-ph/0601523.
[16] B. Scott Gaudi,et al. Exoplanetary Microlensing , 2010, 1002.0332.
[17] Gutti Jogesh Babu,et al. Statistical Challenges in Modern Astronomy IV , 1998 .
[18] H. Witt. An efficient method to compute microlensed light curves for point sources , 1993 .
[19] K. Zebrun,et al. OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event , 2004 .
[20] P. Schechter,et al. On the universality of microlensing in quadruple gravitational lenses , 1995 .
[21] Andrew Gould,et al. Discovering Planetary Systems through Gravitational Microlenses , 1992 .
[22] R. Ibata,et al. Gravitational microlensing of quasar broad‐line regions at large optical depths , 2003, astro-ph/0310818.
[23] M. Irwin,et al. Photometric variations in the Q2237 + 0305 system - First detection of a microlensing event , 1989 .
[24] C. Alcock. Gravitational lenses , 1982, Nature.
[25] G. Lewis,et al. Gravitational microlensing: A parallel, large-data implementation , 2009, 0907.0068.
[26] R. Blandford,et al. Microlensing and the structure of active galactic nucleus accretion disks , 1991 .
[27] Paul L. Schechter,et al. ACCEPTED IN APJ Preprint typeset using LATEX style emulateapj v. 11/26/03 DIFFERENTIAL MICROLENSING OF THE CONTINUUM AND BROAD EMISSION LINES IN SDSS J0924+0219, THE MOST ANOMALOUS LENSED QUASAR ∗ , 2005 .
[28] E. Agol,et al. The size of the mid-IR emission region of a quasar inferred from microlensed images of Q2237 0305 , 2001, astro-ph/0112281.
[29] Donald S. Fussell,et al. On the power of the frame buffer , 1988, TOGS.
[30] C. Kochanek. Quantitative Interpretation of Quasar Microlensing Light Curves , 2003, astro-ph/0307422.
[31] R. Webster,et al. Application of the contouring method to extended microlensed sources , 1999, astro-ph/9901336.
[32] C. Kochanek,et al. X-RAY MICROLENSING IN RXJ1131–1231 AND HE1104–1805 , 2008, 0805.4492.
[33] P. Schechter,et al. X-Ray and Optical Flux Ratio Anomalies in Quadruply Lensed Quasars. I. Zooming in on Quasar Emission Regions , 2006, astro-ph/0607655.
[34] E. Mediavilla,et al. Microlensing of a Biconical Broad-Line Region , 2006, astro-ph/0612064.
[35] V. Belokurov,et al. The OGLE view of microlensing towards the Magellanic Clouds – I. A trickle of events in the OGLE‐II LMC data★ , 2009, 0905.2044.
[36] P. Schneider,et al. Interpretation of the microlensing event in QSO 2237+0305 , 1990 .
[37] E. Mediavilla,et al. A Fast and Very Accurate Approach to the Computation of Microlensing Magnification Patterns Based on Inverse Polygon Mapping , 2006 .
[38] C. Kochanek,et al. MICROLENSING EVIDENCE THAT A TYPE 1 QUASAR IS VIEWED FACE-ON , 2009, 0910.3669.
[39] Heidelberg,et al. Microlensing variability in the gravitationally lensed quasar QSO 2237+0305 ≡ the Einstein Cross I. Spectrophotometric monitoring with the VLT , 2007, 0709.2828.
[40] G. Lewis,et al. Microlensing light curves: a new and efficient numerical method , 1993 .
[41] Naga K. Govindaraju,et al. A Survey of General‐Purpose Computation on Graphics Hardware , 2007 .
[42] R. Webster,et al. A microlensing study of the accretion disc in the quasar MG 0414+0534 , 2008, 0810.1092.
[43] Christopher J. Fluke,et al. Teraflop per second gravitational lensing ray-shooting using graphics processing units , 2009, 0905.2453.
[44] Introduction to Gravitational Microlensing , 2008, 0811.0441.
[45] Piet Hut,et al. A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.
[46] Robert G. Belleman,et al. High Performance Direct Gravitational N-body Simulations on Graphics Processing Units , 2007, ArXiv.