Computational advances in gravitational microlensing: A comparison of CPU, GPU, and parallel, large data codes

[1]  Peter Schneider,et al.  Gravitational Lensing: Strong, Weak and Micro , 2006 .

[2]  Suresh Venkatasubramanian The Graphics Card as a Streaming Computer , 2003, ArXiv.

[3]  Paul L. Schechter,et al.  THE DARK-MATTER FRACTION IN THE ELLIPTICAL GALAXY LENSING THE QUASAR PG 1115+080 , 2008, 0808.3299.

[4]  P. J. Quinn,et al.  Possible gravitational microlensing of a star in the Large Magellanic Cloud , 1993, Nature.

[5]  Stanimire Tomov,et al.  Benchmarking and implementation of probability-based simulations on programmable graphics cards , 2003, Comput. Graph..

[6]  S. Capozziello,et al.  Microlensing search towards M 31 , 2001, astro-ph/0110706.

[7]  B. Monard,et al.  A COLD NEPTUNE-MASS PLANET OGLE-2007-BLG-368Lb: Cold neptunes are common , 2009, 0912.1171.

[8]  D. Long,et al.  The multiple quasar Q2237+0305 under a microlensing caustic , 2007, 0711.4265.

[9]  R. Webster,et al.  The accretion disc in the quasar SDSS J0924+0219★ , 2009, 0905.2651.

[10]  L. Vigroux,et al.  Evidence for gravitational microlensing by dark objects in the Galactic halo , 1993, Nature.

[11]  Astrophysics,et al.  THE SIZES OF THE X-RAY AND OPTICAL EMISSION REGIONS OF RXJ 1131–1231 , 2009, The Astrophysical Journal.

[12]  E. Falco,et al.  MICROLENSING-BASED ESTIMATE OF THE MASS FRACTION IN COMPACT OBJECTS IN LENS GALAXIES , 2009, 0910.3645.

[13]  S. Refsdal,et al.  Flux variations of QSO 0957 + 561 A, B and image splitting by stars near the light path , 1979, Nature.

[14]  Eric B. Ford,et al.  Parallel algorithm for solving Kepler’s equation on Graphics Processing Units: Application to analysis of Doppler exoplanet searches , 2008, 0812.2976.

[15]  T. O. S. University,et al.  Microlensing of the Lensed Quasar SDSS 0924+0219* , 2006, astro-ph/0601523.

[16]  B. Scott Gaudi,et al.  Exoplanetary Microlensing , 2010, 1002.0332.

[17]  Gutti Jogesh Babu,et al.  Statistical Challenges in Modern Astronomy IV , 1998 .

[18]  H. Witt An efficient method to compute microlensed light curves for point sources , 1993 .

[19]  K. Zebrun,et al.  OGLE 2003-BLG-235/MOA 2003-BLG-53: A Planetary Microlensing Event , 2004 .

[20]  P. Schechter,et al.  On the universality of microlensing in quadruple gravitational lenses , 1995 .

[21]  Andrew Gould,et al.  Discovering Planetary Systems through Gravitational Microlenses , 1992 .

[22]  R. Ibata,et al.  Gravitational microlensing of quasar broad‐line regions at large optical depths , 2003, astro-ph/0310818.

[23]  M. Irwin,et al.  Photometric variations in the Q2237 + 0305 system - First detection of a microlensing event , 1989 .

[24]  C. Alcock Gravitational lenses , 1982, Nature.

[25]  G. Lewis,et al.  Gravitational microlensing: A parallel, large-data implementation , 2009, 0907.0068.

[26]  R. Blandford,et al.  Microlensing and the structure of active galactic nucleus accretion disks , 1991 .

[27]  Paul L. Schechter,et al.  ACCEPTED IN APJ Preprint typeset using LATEX style emulateapj v. 11/26/03 DIFFERENTIAL MICROLENSING OF THE CONTINUUM AND BROAD EMISSION LINES IN SDSS J0924+0219, THE MOST ANOMALOUS LENSED QUASAR ∗ , 2005 .

[28]  E. Agol,et al.  The size of the mid-IR emission region of a quasar inferred from microlensed images of Q2237 0305 , 2001, astro-ph/0112281.

[29]  Donald S. Fussell,et al.  On the power of the frame buffer , 1988, TOGS.

[30]  C. Kochanek Quantitative Interpretation of Quasar Microlensing Light Curves , 2003, astro-ph/0307422.

[31]  R. Webster,et al.  Application of the contouring method to extended microlensed sources , 1999, astro-ph/9901336.

[32]  C. Kochanek,et al.  X-RAY MICROLENSING IN RXJ1131–1231 AND HE1104–1805 , 2008, 0805.4492.

[33]  P. Schechter,et al.  X-Ray and Optical Flux Ratio Anomalies in Quadruply Lensed Quasars. I. Zooming in on Quasar Emission Regions , 2006, astro-ph/0607655.

[34]  E. Mediavilla,et al.  Microlensing of a Biconical Broad-Line Region , 2006, astro-ph/0612064.

[35]  V. Belokurov,et al.  The OGLE view of microlensing towards the Magellanic Clouds – I. A trickle of events in the OGLE‐II LMC data★ , 2009, 0905.2044.

[36]  P. Schneider,et al.  Interpretation of the microlensing event in QSO 2237+0305 , 1990 .

[37]  E. Mediavilla,et al.  A Fast and Very Accurate Approach to the Computation of Microlensing Magnification Patterns Based on Inverse Polygon Mapping , 2006 .

[38]  C. Kochanek,et al.  MICROLENSING EVIDENCE THAT A TYPE 1 QUASAR IS VIEWED FACE-ON , 2009, 0910.3669.

[39]  Heidelberg,et al.  Microlensing variability in the gravitationally lensed quasar QSO 2237+0305 ≡ the Einstein Cross I. Spectrophotometric monitoring with the VLT , 2007, 0709.2828.

[40]  G. Lewis,et al.  Microlensing light curves: a new and efficient numerical method , 1993 .

[41]  Naga K. Govindaraju,et al.  A Survey of General‐Purpose Computation on Graphics Hardware , 2007 .

[42]  R. Webster,et al.  A microlensing study of the accretion disc in the quasar MG 0414+0534 , 2008, 0810.1092.

[43]  Christopher J. Fluke,et al.  Teraflop per second gravitational lensing ray-shooting using graphics processing units , 2009, 0905.2453.

[44]  Introduction to Gravitational Microlensing , 2008, 0811.0441.

[45]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[46]  Robert G. Belleman,et al.  High Performance Direct Gravitational N-body Simulations on Graphics Processing Units , 2007, ArXiv.