Effect of the Stretching Process of Polyethylene Separators on Rate Capability of Lithium-Ion Batteries

[1]  Hideya Yoshitake,et al.  Effect of Cross-Sectional Shape of Pathway on Ion Migration in Polyethylene Separators for Lithium-Ion Batteries , 2020 .

[2]  S. Lanceros‐Méndez,et al.  Recent advances on separator membranes for lithium-ion battery applications: From porous membranes to solid electrolytes , 2019, Energy Storage Materials.

[3]  Yuria Saito,et al.  Factors Determining Ionic Mobility in Ion Migration Pathways of Polypropylene (PP) Separator for Lithium Secondary Batteries , 2019, The Journal of Physical Chemistry C.

[4]  V. Wood,et al.  Characterization and performance evaluation of lithium-ion battery separators , 2018, Nature Energy.

[5]  Yuria Saito,et al.  Stress-Free Pathway for Ion Transport in the Separator Membrane of Lithium Secondary Batteries , 2018, The Journal of Physical Chemistry C.

[6]  Bernhard Tjaden,et al.  Tortuosity in electrochemical devices: a review of calculation approaches , 2018 .

[7]  Yuria Saito,et al.  A Selective Interaction Between Cation and Separator Membrane in Lithium Secondary Batteries , 2017 .

[8]  Huamin Zhang,et al.  Porous membranes in secondary battery technologies. , 2017, Chemical Society Reviews.

[9]  Myung-Hyun Ryou,et al.  In-depth correlation of separator pore structure and electrochemical performance in lithium-ion batteries , 2016 .

[10]  Simon Franz Heindl,et al.  Evaluating the trade-off between mechanical and electrochemical performance of separators for lithium-ion batteries: Methodology and application , 2016 .

[11]  Yuria Saito,et al.  Factors Controlling the Ionic Mobility of Lithium Electrolyte Solutions in Separator Membranes , 2016 .

[12]  S. Lanceros‐Méndez,et al.  Effect of the degree of porosity on the performance of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium-ion battery separators , 2015 .

[13]  Costas Elmasides,et al.  Separators for Lithium‐Ion Batteries: A Review on the Production Processes and Recent Developments , 2015 .

[14]  Yuria Saito,et al.  Ion Transport in Separator Membranes of Lithium Secondary Batteries , 2015 .

[15]  Ozan Toprakci,et al.  A review of recent developments in membrane separators for rechargeable lithium-ion batteries , 2014 .

[16]  Chang Woo Lee,et al.  Physical, thermal, and electrochemical characterization of stretched polyethylene separators for application in lithium-ion batteries , 2013, Journal of Solid State Electrochemistry.

[17]  William Paul King,et al.  High power rechargeable batteries , 2012 .

[18]  Tatsuo Nakamura,et al.  Silica-Composite Nonwoven Separators for Lithium-Ion Battery: Development and Characterization , 2008 .

[19]  Sébastien Martinet,et al.  Lithium-ion batteries with high charge rate capacity: Influence of the porous separator , 2007 .

[20]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[21]  Takashi Nishimura,et al.  A powder particle size effect on ceramic powder based separator for lithium rechargeable battery , 2005 .

[22]  Daewoo Ihm,et al.  Effect of polymer blending and drawing conditions on properties of polyethylene separator prepared for Li-ion secondary battery , 2002 .

[23]  K. Abraham Directions in secondary lithium battery research and development , 1993 .

[24]  Harvey Steven Bierenbaum,et al.  Microporous Polymeric Films , 1974 .

[25]  G. A. Muccini,et al.  Characteristics of porous beds and structures , 1956 .

[26]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[27]  S. Ball “Electrolytes for Lithium and Lithium-Ion Batteries” , 2015 .

[28]  Robert Kostecki,et al.  The mechanism of HF formation in LiPF6-based organic carbonate electrolytes , 2012 .