Optimization of an Electrochemical DNA Assay by Using a 48‐Electrode Array and Redox Amplification Studies by Means of Scanning Electrochemical Microscopy

Sensible DNA: An electrochemical DNA assay based on specific Salmonella spp. capture probes and enzyme labeling with alkaline phosphatase was optimized by using a 48‐electrode microarray and scanning electrochemical microscopy (SECM). SECM was further used to evaluate potential amplification strategies due to redox cycling.

[1]  W. Schuhmann,et al.  Label‐Free Detection of DNA Hybridization in Presence of Intercalators Using Electrochemical Impedance Spectroscopy , 2009 .

[2]  Gunther Wittstock,et al.  Elektrochemische Rastermikroskopie zur direkten Abbildung von Reaktionsgeschwindigkeiten , 2007 .

[3]  G. Wittstock,et al.  Scanning electrochemical microscopy for direct imaging of reaction rates. , 2007, Angewandte Chemie.

[4]  Peng Sun,et al.  Scanning electrochemical microscopy in the 21st century. , 2007, Physical chemistry chemical physics : PCCP.

[5]  H. Shiku,et al.  Electrochemical monitoring of cellular signal transduction with a secreted alkaline phosphatase reporter system. , 2006, Analytical chemistry.

[6]  J. Justin Gooding,et al.  DNA Biosensor Concepts Based on a Change in the DNA Persistence Length upon Hybridization , 2006 .

[7]  M. Stelzle,et al.  Characterization of Nanopore Electrode Structures as Basis for Amplified Electrochemical Assays , 2006 .

[8]  Kia Peyvan,et al.  Electrochemical Detection of Short DNA Oligomer Hybridization Using the CombiMatrix ElectraSense Microarray Reader , 2006 .

[9]  I. Gut,et al.  DNA analysis by mass spectrometry-past, present and future. , 2006, Journal of mass spectrometry : JMS.

[10]  Kevin Schwarzkopf,et al.  Multiplexed analyte and oligonucleotide detection on microarrays using several redox enzymes in conjunction with electrochemical detection. , 2006, Lab on a chip.

[11]  R. Hintsche,et al.  Automated detection and quantitation of bacterial RNA by using electrical microarrays. , 2006, Analytical chemistry.

[12]  Hao Chen,et al.  Determination of Surface-Immobilized Double-Stranded DNA Using a Metallointercalator and Catalytic Voltammetry , 2006 .

[13]  Uwe Karst,et al.  Labeling strategies for bioassays , 2006, Analytical and bioanalytical chemistry.

[14]  H Wieder,et al.  DNA-arrays with electrical detection: a label-free low cost technology for routine use in life sciences and diagnostics. , 2005, Bioelectrochemistry.

[15]  Wolfgang Schuhmann,et al.  Imaging immobilised ssDNA and detecting DNA hybridisation by means of the repelling mode of scanning electrochemical microscopy (SECM). , 2004, Biosensors & bioelectronics.

[16]  W. Schuhmann,et al.  Label-free electrochemical recognition of DNA hybridization by means of modulation of the feedback current in SECM. , 2004, Angewandte Chemie.

[17]  W. Schuhmann,et al.  Markerfreie elektrochemische Detektion von DNA-Hybridisierung durch Modulation des Feedbackstroms in der elektrochemischen Rastermikroskopie† , 2004 .

[18]  T. G. Drummond,et al.  Electrochemical DNA sensors , 2003, Nature Biotechnology.

[19]  Gundula Piechotta,et al.  Electrical biochip technology—a tool for microarrays and continuous monitoring , 2003, Analytical and bioanalytical chemistry.

[20]  J. Justin Gooding,et al.  Electrochemical DNA Hybridization Biosensors , 2002 .

[21]  Ladislav Novotný,et al.  Label-free determination of picogram quantities of DNA by stripping voltammetry with solid copper amalgam or mercury electrodes in the presence of copper. , 2002, Analytical chemistry.

[22]  Joseph Wang,et al.  Amplified label-free electrical detection of DNA hybridization. , 2002, The Analyst.

[23]  M. Mirkin,et al.  Electroanalytical measurements using the scanning electrochemical microscope , 2000 .

[24]  W. Kutner,et al.  Microelectrodes. Definitions, characterization, and applications (Technical report) , 2000 .

[25]  H. Fuchs,et al.  Classification of Scanning Probe Microscopies , 1999 .

[26]  W. Kuhr,et al.  Ultrasensitive voltammetric detection of underivatized oligonucleotides and DNA. , 1997, Analytical chemistry.

[27]  S. P. Fodor DNA SEQUENCING: Massively Parallel Genomics , 1997, Science.

[28]  C. Kranz,et al.  Lateral deposition of polypyrrole lines over insulating gaps. Towards the development of polymer-based electronic devices† , 1995 .

[29]  H. B. Halsall,et al.  Zeptomole detection limit for alkaline phosphatase using 4-aminophenylphosphate, amperometric detection, and an optimal buffer system , 1993 .

[30]  O. Niwa,et al.  Highly sensitive and selective voltammetric detection of dopamine with vertically separated interdigitated array electrodes , 1991 .

[31]  I. Willner,et al.  Biomolecule-nanoparticle hybrid systems for bioelectronic applications. , 2007, Bioelectrochemistry.

[32]  H. Xie,et al.  A redox active and electrochemiluminescent threading bis-intercalator and its applications in DNA assays. , 2006, Frontiers in bioscience : a journal and virtual library.

[33]  A. Jung DNA chip technology , 2002, Analytical and Bioanalytical Chemistry.

[34]  O. Niwa,et al.  Interdigitated array microelectrodes as electrochemical sensors , 1997 .

[35]  Thomas Lisec,et al.  Microelectrode arrays and application to biosensing devices , 1994 .

[36]  W. Heineman,et al.  Comparison of methods for following alkaline phosphatase catalysis: spectrophotometric versus amperometric detection. , 1991, Analytical biochemistry.

[37]  A. Bard,et al.  Scanning electrochemical microscopy. Introduction and principles , 1989 .