Maximum likelihood versus likelihood-free quantum system identification in the atom maser

We consider the problem of estimating a dynamical parameter of a Markovian quantum open system (the atom maser), by performing continuous time measurements in the systemʼs output (outgoing atoms). Two estimation methods are investigated and compared. Firstly, the maximum likelihood estimator (MLE) takes into account the full measurement data and is asymptotically optimal in terms of its mean square error. Secondly, the 'likelihood-free' method of approximate Bayesian computation (ABC) produces an approximation of the posterior distribution for a given set of summary statistics, by sampling trajectories at different parameter values and comparing them with the measurement data via chosen statistics. Building on previous results which showed that atom counts are poor statistics for certain values of the Rabi angle, we apply MLE to the full measurement data and estimate its Fisher information. We then select several correlation statistics such as waiting times, distribution of successive identical detections, and use them as input of the ABC algorithm. The resulting posterior distribution follows closely the data likelihood, showing that the selected statistics capture 'most' statistical information about the Rabi angle.

[1]  Andrew D. Greentree,et al.  Identifying an experimental two-state Hamiltonian to arbitrary accuracy (11 pages) , 2005 .

[2]  Franco Nori,et al.  Indirect quantum tomography of quadratic Hamiltonians , 2010, 1004.5018.

[3]  Scully,et al.  Role of pumping statistics in maser and laser dynamics: Density-matrix approach. , 1989, Physical review. A, General physics.

[4]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[5]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[6]  Richard L. Smith,et al.  Essentials of statistical inference , 2005 .

[7]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[8]  H. M. Wiseman,et al.  State and dynamical parameter estimation for open quantum systems , 2001 .

[9]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[10]  B. Englert,et al.  Entangled atoms in Micromaser Physics , 1998 .

[11]  J. P. Garrahan,et al.  Quantum trajectory phase transitions in the micromaser. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  B. Leroux Maximum-likelihood estimation for hidden Markov models , 1992 .

[13]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[14]  Klaus Molmer,et al.  Estimation of atomic interaction parameters by photon counting , 2014, 1403.1192.

[15]  Christopher Ferrie,et al.  Likelihood-free methods for quantum parameter estimation. , 2013, Physical review letters.

[16]  M. Guta,et al.  Fisher informations and local asymptotic normality for continuous-time quantum Markov processes , 2014, 1407.5131.

[17]  G. Rempe,et al.  Very-low-temperature behavior of a micromaser. , 1988, Optics letters.

[18]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[19]  Hideo Mabuchi Dynamical identification of open quantum systems , 1996 .

[20]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[21]  S. E. Ahmed,et al.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference , 2008, Technometrics.

[22]  P. Bickel,et al.  Asymptotic normality of the maximum-likelihood estimator for general hidden Markov models , 1998 .

[23]  Role of pumping statistics in micromasers. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[24]  Akio Fujiwara,et al.  Quantum channel identification problem , 2001 .

[25]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[26]  Madalin Guta,et al.  Asymptotic inference in system identification for the atom maser , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  T Petrie,et al.  Probabilistic functions of finite-state markov chains. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[28]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[29]  A. Jenčová,et al.  Local Asymptotic Normality in Quantum Statistics , 2006, quant-ph/0606213.

[30]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[31]  Jonathan P Dowling,et al.  Quantum technology: the second quantum revolution , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  David B. Johnson,et al.  Detection statistics in the micromaser , 1999 .

[33]  Large Deviations, Central Limit and dynamical phase transitions in the atom maser , 2012, 1206.4956.

[34]  Meschede,et al.  One-atom maser. , 1985, Physical review letters.

[35]  Klaus Mølmer,et al.  Fisher information and the quantum Cramér-Rao sensitivity limit of continuous measurements. , 2013, Physical review letters.

[36]  Jean-Michel Marin,et al.  Approximate Bayesian computational methods , 2011, Statistics and Computing.

[37]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[38]  Luc Bouten,et al.  Stochastic Schrödinger equations , 2003 .

[39]  Walther,et al.  One-atom maser: Phase-sensitive measurements. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[40]  Walther,et al.  One-atom maser: Statistics of detector clicks. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[41]  Ramon van Handel,et al.  Quantum projection filter for a highly nonlinear model in cavity QED , 2005 .

[42]  L. Baum,et al.  Statistical Inference for Probabilistic Functions of Finite State Markov Chains , 1966 .

[43]  M. Guta,et al.  Equivalence Classes and Local Asymptotic Normality in System Identification for Quantum Markov Chains , 2014, 1402.3535.

[44]  R. Douc,et al.  Asymptotics of the maximum likelihood estimator for general hidden Markov models , 2001 .

[45]  M. Feldman,et al.  Population growth of human Y chromosomes: a study of Y chromosome microsatellites. , 1999, Molecular biology and evolution.

[46]  Hideo Mabuchi,et al.  Principles and applications of control in quantum systems , 2005 .

[47]  O. Barndorff-Nielsen,et al.  On quantum statistical inference , 2003, quant-ph/0307189.

[48]  Walther,et al.  Quantum jumps of the micromaser field: Dynamic behavior close to phase transition points. , 1994, Physical review letters.

[49]  M. Guta,et al.  Fisher information and asymptotic normality in system identification for quantum Markov chains , 2010, 1007.0434.

[50]  R. Gill,et al.  On asymptotic quantum statistical inference , 2011, 1112.2078.

[51]  J. Kahn,et al.  Local asymptotic normality for qubit states , 2005, quant-ph/0512075.

[52]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[53]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[54]  J. Wrachtrup,et al.  Quantum process tomography and Linblad estimation of a solid-state qubit , 2006, quant-ph/0601167.

[55]  R. Minlos,et al.  A system of three quantum particles with point-like interactions , 2014 .

[56]  K. Mølmer,et al.  Bayesian parameter inference from continuously monitored quantum systems , 2012, 1212.5700.