Parallel relativistic multiconfiguration methods : new powerful tools for heavy-element electronic structure studies

We present a parallel implementation of a large-scale relativistic double-group configuration interaction (CI) program. It is applicable with a large variety of twoand four-component Hamiltonians. The parallel algorithm is based on a distributed data model in combination with a static load balancing scheme. The excellent scalability of our parallelization scheme is demonstrated in largescale four-component multi-reference CI (MRCI) benchmark tests on various modern computer architectures, and we also discuss hardware-dependent aspects with respect to possible speedup limitations. As an illustration of the potential of our new parallel code, we have calculated spectroscopic properties for the BiH molecule at various excitation levels using extensive basis sets. We focus in particular on an accurate description of the splitting of the ground state and the first excited state which is caused by spin-orbit coupling. Our largest parallel MRCI calculation thereby comprised an expansion length of 2.7× 109 Slater determinants. PACS numbers: 31.15.ae, 31.15.aj, 31.15.am, 31.15.vn, 33.15.Dj, 31.15.ag

[1]  Y. Ishikawa,et al.  Intermediate Hamiltonian Fock-space coupled-cluster method: Excitation energies of barium and radium , 2000 .

[2]  Kimihiko Hirao,et al.  A highly efficient algorithm for electron repulsion integrals over relativistic four-component Gaussian-type spinors , 2002 .

[3]  I. Infante Computational studies in actinide chemistry , 2006 .

[4]  Charles W. Bauschlicher,et al.  On correlation in the first row transition metal atoms , 1982 .

[5]  R. Fletcher Practical Methods of Optimization , 1988 .

[6]  G. Breit The Effect of Retardation on the Interaction of Two Electrons , 1929 .

[7]  T. Kühne,et al.  Vibrational relaxation and geminate recombination in the femtosecond‐photodissociation of triiodide in solution , 1996 .

[8]  W. R. Robinson,et al.  Mononuclear and Polynuclear Chemistry of Rhenium (III): Its Pronounced Homophilicity , 1964, Science.

[9]  P. Schwerdtfeger,et al.  Relativistic small-core energy-consistent pseudopotentials for the alkaline-earth elements from Ca to Ra. , 2006, The Journal of chemical physics.

[10]  Kazutaka Takahashi,et al.  Photodissociation of gas-phase I−3: product branching in the visible and UV regions , 2001 .

[11]  U. Gaubatz,et al.  Population switching between vibrational levels in molecular beams , 1988 .

[12]  Evert Jan Baerends,et al.  The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. , 1996 .

[13]  Kiyoshi Tanaka,et al.  A graphical symmetric group approach for a spin adapted full configuration interaction: partitioning of a configuration graph into sets of closed-shell and open-shell graphs , 2007 .

[14]  E. Gross,et al.  Time-dependent density functional theory. , 2004, Annual review of physical chemistry.

[15]  T. Saue Spin-Interactions and the Non-relativistic Limit of Electrodynamics , 2005 .

[16]  J. Lennard-jones,et al.  Molecular Spectra and Molecular Structure , 1929, Nature.

[17]  B. Roos The Multiconfigurational (MC) Self-Consistent Field (SCF) Theory , 1992 .

[18]  T. Fleig Relativistic String-Based Electron Correlation Methods , 2010 .

[19]  F. Albert Cotton,et al.  Multiple bonds between metal atoms , 1982 .

[20]  N. Nemitz Production and spectroscopy of ultracold YbRb* molecules , 2009 .

[21]  K. Dyall An exact separation of the spin‐free and spin‐dependent terms of the Dirac–Coulomb–Breit Hamiltonian , 1994 .

[22]  L. Visscher On the construction of double group molecular symmetry functions , 1996 .

[23]  S. Knecht,et al.  Large-scale parallel configuration interaction. II. Two- and four-component double-group general active space implementation with application to BiH. , 2010, The Journal of chemical physics.

[24]  P. Siska Cold and ultracold ion-neutral inelastic collisions: Spin-orbit relaxation in He+Ne + , 2001 .

[25]  M. Urban,et al.  Electric properties of hydrogen iodide: Reexamination of correlation and relativistic effects , 2003 .

[26]  Michael Dolg,et al.  Lanthanides and Actinides , 2002 .

[27]  Lucas Visscher,et al.  The generalized active space concept for the relativistic treatment of electron correlation. II. Large-scale configuration interaction implementation based on relativistic 2- and 4-spinors and its application , 2003 .

[28]  B. Roos,et al.  A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach , 1980 .

[29]  O. Dulieu,et al.  Cold molecules: a chemistry kitchen for physicists? , 2006 .

[30]  K. Dyall Relativistic and nonrelativistic finite nucleus optimized triple zeta basis sets for the 4p, 5p and 6p elements , 2003 .

[31]  E. Bodo,et al.  Ultra low-energy behavior of an ionic replacement reaction 3 He 4 He + + 4 He → 4 He + 2 + 3 He , 2006 .

[32]  T. Saue,et al.  Diatomic molecules between very heavy elements of group 13 and group 17: A study of relativistic effects on bonding , 2001 .

[33]  Laura Gagliardi,et al.  Reaching the maximum multiplicity of the covalent chemical bond. , 2007, Angewandte Chemie.

[34]  Danny L. Yeager,et al.  Guaranteed convergence in ground state multiconfigurational self‐consistent field calculations , 1983 .

[35]  L. Visscher,et al.  Large-scale electron correlation calculations in the framework of the spin-free dirac formalism: the Au2 molecule revisited , 2005 .

[36]  M. Ernzerhof,et al.  On the calculation of first‐order properties: Expectation value versus energy derivative approach , 1992 .

[37]  K. Dyall,et al.  Kramers' Restricted Closed Shell CCSD Theory , 1995 .

[38]  B. Bursten,et al.  Spin-Orbit Effects on the Electronic Structure of Heavy and Superheavy Hydrogen Halides: Prediction of an Anomalously Strong Bond in H(117) , 1999 .

[39]  Pekka Pyykkö,et al.  Relativistic effects in structural chemistry , 1988 .

[40]  Michael A. Robb,et al.  Parallel implementation of the CI-vector evaluation in full CI/CAS-SCF , 2000 .

[41]  B. Schimmelpfennig,et al.  Inclusion of mean-field spin–orbit effects based on all-electron two-component spinors: Pilot calculations on atomic and molecular properties , 2001 .

[42]  Kimihiko Hirao,et al.  A new computational scheme for the Dirac–Hartree–Fock method employing an efficient integral algorithm , 2001 .

[43]  B. Roos,et al.  New relativistic ANO basis sets for actinide atoms , 2005 .

[44]  U. Gaubatz,et al.  Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields. A new concept and experimental results , 1990 .

[45]  D. Neumark,et al.  Two- and three-body photodissociation of gas phase I3- , 2004 .

[46]  J. A. Gaunt The Relativistic Theory of an Atom with Many Electrons , 1929 .

[47]  S. Schiller,et al.  Tests of time independence of the electron and nuclear masses with ultracold molecules , 2005 .

[48]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2006 .

[49]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[50]  Y. Ishikawa,et al.  Intermediate Hamiltonian Fock-space coupled cluster method in the one-hole one-particle sector: Excitation energies of xenon and radon , 2001 .

[51]  Bernd Schimmelpfennig,et al.  The restricted active space (RAS) state interaction approach with spin-orbit coupling , 2002 .

[52]  Pekka Pyykkö,et al.  Relativity and the periodic system of elements , 1979 .

[53]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the 4s, 5s, 6s, and 7s elements. , 2009, The journal of physical chemistry. A.

[54]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[55]  T. Fleig Wave Function Based Relativistic Multi-Reference Electron Correlation Methods. Development and Application to Atomic and Molecular Properties. , 2007 .

[56]  J. Olsen,et al.  Passing the one-billion limit in full configuration-interaction (FCI) calculations , 1990 .

[57]  Poul Jørgensen,et al.  Response functions from Fourier component variational perturbation theory applied to a time-averaged quasienergy , 1998 .

[58]  Y. Ishikawa,et al.  Electronic structure of eka-thorium (element 122) compared with thorium , 2002 .

[59]  P. Dirac The quantum theory of the electron , 1928 .

[60]  F. A. Parpia,et al.  GRASP: A general-purpose relativistic atomic structure program , 1989 .

[61]  E. Commins,et al.  New limit on the electron electric dipole moment. , 2002, Physical review letters.

[62]  T. Fleig,et al.  Spectroscopic and electric properties of the LiCs molecule: a coupled cluster study including higher excitations , 2009 .

[63]  M. Fushitani,et al.  Applications of pump-probe spectroscopy , 2008 .

[64]  Michael Dolg,et al.  Relativistic energy‐consistent pseudopotentials—Recent developments , 2002, J. Comput. Chem..

[65]  E. Hinds,et al.  Measurement of the electron electric dipole moment using YbF molecules. , 2002, Physical review letters.

[66]  J. A. Gaunt The Triplets of Helium , 1929 .

[67]  Yoon Sup Lee,et al.  Spin–orbit effects on the transactinide p-block element monohydrides MH (M=element 113–118) , 2000 .

[68]  M. Tinkham Group Theory and Quantum Mechanics , 1964 .

[69]  M. Reiher,et al.  Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science , 2009 .

[70]  Mesoscopic molecular ions in Bose-Einstein condensates. , 2001, Physical review letters.

[71]  P. Voehringer,et al.  Transient anisotropy and fragment rotational excitation in the femtosecond photodissociation of triiodide in solution. , 1998 .

[72]  K. Dyall,et al.  Formulation and implementation of a relativistic unrestricted coupled-cluster method including noniterative connected triples , 1996 .

[73]  U. Banin,et al.  Ultrafast photodissociation of I3− in solution: Direct observation of coherent product vibrations , 1992 .

[74]  L. Visscher,et al.  Approximate relativistic electron structure methods based on the quaternion modified Dirac , 2000 .

[75]  L. Visscher,et al.  Formulation and implementation of the relativistic Fock-space coupled cluster method for molecules , 2001 .

[76]  W. Kutzelnigg Basis set expansion of the dirac operator without variational collapse , 1984 .

[77]  T. Saue Chapter Seven – Post Dirac-Hartree-Fock Methods - Properties , 2002 .

[78]  B. Roos,et al.  First-order properties and the Hellmann–Feynman theorem in the case of a limited CI wave function , 1979 .

[79]  P. Pulay Analytical Derivative Techniques and the Calculation of Vibrational Spectra , 1995 .

[80]  Hess,et al.  Applicability of the no-pair equation with free-particle projection operators to atomic and molecular structure calculations. , 1985, Physical review. A, General physics.

[81]  M. Gell-Mann The interpretation of the new particles as displaced charge multiplets , 1956 .

[82]  Gilbert N. Lewis,et al.  The Atom and the Molecule , 1916, Resonance.

[83]  G. Diercksen,et al.  Legitimate calculation of first-order molecular properties in the case of limited CI functions. Dipole moments , 1981 .

[84]  P. Atkins,et al.  Molecular Quantum Mechanics , 1970 .

[85]  R. Kosloff,et al.  Ab initio and diatomics in molecule potentials for I 2 ,I 2 ,I 3 , and I 3 , 2001 .

[86]  L. Visscher,et al.  On the bonding and the electric field gradient of the uranyl ion , 1998 .

[87]  K. Dyall Relativistic double-zeta, triple-zeta, and quadruple-zeta basis sets for the actinides Ac–Lr , 2007 .

[88]  Lemin Li,et al.  Parallelization of MRCI based on hole‐particle symmetry , 2005, J. Comput. Chem..

[89]  L. Visscher,et al.  Kinetic balance in contracted basis sets for relativistic calculations , 1991 .

[90]  Schrödinger An Undulatory Theory of the Mechanics of Atoms and Molecules , 1926 .

[91]  R. Krems,et al.  Editorial: Quo vadis, cold molecules? , 2004 .

[92]  P. Geerlings,et al.  Limited configuration interaction calculations of one-electron properties: the use of a window , 1994 .

[93]  Hiroshi Nakatsuji,et al.  SAC and SAC-CI calculations of excitation and circular dichroism spectra of straight-chain and cyclic dichalcogens. , 2006, The journal of physical chemistry. A.

[94]  G. Frenking,et al.  Theoretical chemistry: The six-bond bound , 2007, Nature.

[95]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[96]  A. B. Alekseyev,et al.  Spin–orbit configuration interaction study of the potential energy curves and radiative lifetimes of the low‐lying states of bismuth hydride , 1994 .

[97]  J. Olsen,et al.  Molecular electronic-structure theory , 2000 .

[98]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[99]  K. Dyall Relativistic Quadruple-Zeta and Revised Triple-Zeta and Double-Zeta Basis Sets for the 4p, 5p, and 6p Elements , 2006 .

[100]  G. Berden,et al.  Decelerating neutral dipolar molecules , 1999 .

[101]  B. Roos,et al.  Relativistic quantum chemistry: the multiconfigurational approach , 2004 .

[102]  Jun Ye,et al.  Precision test of mass-ratio variations with lattice-confined ultracold molecules. , 2007, Physical review letters.

[103]  Henryk Sienkiewicz,et al.  Quo Vadis? , 1967, American Association of Industrial Nurses journal.

[104]  Thom H. Dunning,et al.  Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon , 1995 .

[105]  Stefan Grimme,et al.  Parallel multireference configuration interaction calculations on mini-beta-carotenes and beta-carotene. , 2009, The Journal of chemical physics.

[106]  B. Roos,et al.  Molcas: a program package for computational chemistry. , 2003 .

[107]  L. Seijo Relativistic ab initio model potential calculations including spin–orbit effects through the Wood–Boring Hamiltonian , 1995 .

[108]  P. A. Christiansen,et al.  Accurate relativistic effective potentials for the sixth-row main group elements , 1997 .

[109]  O. Gropen,et al.  Relativistic effects on the bonding of heavy and superheavy hydrogen halides , 1996 .

[110]  S. Knecht,et al.  Large-scale parallel configuration interaction. I. Nonrelativistic and scalar-relativistic general active space implementation with application to (Rb-Ba)+. , 2008, The Journal of chemical physics.

[111]  S. Yabushita,et al.  Photodissociation of gas-phase I3-: comprehensive understanding of nonadiabatic dissociation dynamics. , 2007, The Journal of chemical physics.

[112]  B. Roos,et al.  Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond , 2005, Nature.

[113]  Visscher Approximate relativistic electronic structure methods based on the quaternion modified Dirac equation , 2000 .

[114]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[115]  M. Dolg ACCURACY OF ENERGY-ADJUSTED QUASIRELATIVISTIC PSEUDOPOTENTIALS : A CALIBRATION STUDY OF XH AND X2 (X = F, CL, BR, I, AT) , 1996 .

[116]  K. Ruud,et al.  Ab initio Methods for the Calculation of NMR Shielding and Indirect Spin—Spin Coupling Constants , 1999 .

[117]  K. Balasubramanian Relativistic configuration interaction calculations of the low-lying states of BiH , 1985 .

[118]  W. C. Martin,et al.  Handbook of Basic Atomic Spectroscopic Data , 2005 .

[119]  Lucas Visscher,et al.  Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction , 1997 .

[120]  I. P. Grant,et al.  Matrix representation of operator products , 1984 .

[121]  Kimihiko Hirao,et al.  A new implementation of four-component relativistic density functional method for heavy-atom polyatomic systems , 2001 .

[122]  Richard E. Stanton,et al.  Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations , 1984 .

[123]  Lucas Visscher,et al.  The Dirac equation in quantum chemistry: Strategies to overcome the current computational problems , 2002, J. Comput. Chem..

[124]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[125]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[126]  P. A. Christiansen,et al.  Low-lying 0+ states of bismuth hydride , 1997 .

[127]  S. Grimme,et al.  A COMBINATION OF KOHN-SHAM DENSITY FUNCTIONAL THEORY AND MULTI-REFERENCE CONFIGURATION INTERACTION METHODS , 1999 .

[128]  E. Wigner,et al.  Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .

[129]  J. Olsen,et al.  A relativistic 4-component general-order multi-reference coupled cluster method: initial implementation and application to HBr , 2007 .

[130]  A. Einstein Zur Elektrodynamik bewegter Körper , 1905 .

[131]  B. J. Greenblatt,et al.  Photodissociation of gas phase I3− using femtosecond photoelectron spectroscopy , 1999 .

[132]  J. Desclaux Relativistic Dirac-Fock expectation values for atoms with Z = 1 to Z = 120 , 1973 .

[133]  A. Vos,et al.  The crystal structure of two modifications of tetraethylammonium triiodide, (C2H5)4NI3 , 1967 .

[134]  P. Dirac Quantum Mechanics of Many-Electron Systems , 1929 .

[135]  G. Herzberg,et al.  Constants of diatomic molecules , 1979 .

[136]  Masahiro Sekiya,et al.  Relativistic correlating basis sets for actinide atoms from 90Th to 103Lr , 2007, J. Comput. Chem..

[137]  J. Fiser,et al.  Multireference CI calculation of nuclear quadrupole coupling constants of CN+ and CN-: rovibrational dependence. , 2002, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[138]  Trond Saue,et al.  An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. , 2007, The Journal of chemical physics.

[139]  R. Bise,et al.  Photodissociation dynamics of the triiodide anion (I3 , 2000 .

[140]  Talman Minimax principle for the Dirac equation. , 1986, Physical review letters.

[141]  William J. Thompson,et al.  Monster Matrices: Their Eigenvalues and Eigenvectors , 1993 .

[142]  T. Kühne,et al.  Femtosecond photodissociation of triiodide in solution: Excitation energy dependence and transition state dynamics , 1998 .

[143]  H. Jensen,et al.  A direct relativistic four-component multiconfiguration self-consistent-field method for molecules. , 2008, The Journal of chemical physics.

[144]  U. Banin,et al.  Ultrafast photodissociation of I3. Coherent photochemistry in solution , 1993 .

[145]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[146]  L. Visscher,et al.  Four-Component Electronic Structure Methods for Molecules , 2003 .

[147]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[148]  Christel M. Marian,et al.  A mean-field spin-orbit method applicable to correlated wavefunctions , 1996 .

[149]  Karen J. Olsen,et al.  NIST Atomic Spectra Database (version 2.0) , 1999 .

[150]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[151]  C. Marian,et al.  Relativistic all-electron ab initio calculations on the platinum hydride molecule , 1994 .

[152]  W. W. Smith,et al.  Radiative charge-transfer lifetime of the excited state of ( NaCa ) + , 2002, physics/0209077.

[153]  Lucas Visscher,et al.  The generalized active space concept for the relativistic treatment of electron correlation. III. Large-scale configuration interaction and multiconfiguration self-consistent-field four-component methods with application to UO2. , 2006, The Journal of chemical physics.

[154]  U. Radius,et al.  To boldly pass the metal-metal quadruple bond. , 2006, Angewandte Chemie.

[155]  K. Dyall,et al.  Kinetic balance and variational bounds failure in the solution of the Dirac equation in a finite Gaussian basis set , 1990 .

[156]  P. Schwerdtfeger,et al.  Ab initio pseudopotentials for Hg to Rn , 1991 .

[157]  C. Marian,et al.  Four-component relativistic coupled cluster and configuration interaction calculations on the ground and excited states of the RbYb molecule. , 2009, The journal of physical chemistry. A.

[158]  Jeppe Olsen,et al.  The initial implementation and applications of a general active space coupled cluster method , 2000 .

[159]  E. Wigner Ueber die Operation der Zeitumkehr in der Quantenmechanik , 1993 .

[160]  E. Davidson The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices , 1975 .

[161]  Mark S. Gordon,et al.  The Parallel Implementation of a Full Configuration Interaction Program , 2003 .

[162]  M. Dolg Relativistic Effective Core Potentials , 2002 .

[163]  G. E. Brown,et al.  On the interaction of two electrons , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[164]  U. Banin,et al.  Ultrafast vibrational dynamics of nascent diiodide fragments studied by femtosecond transient resonance impulsive stimulated Raman scattering , 1993 .

[165]  B. Roos,et al.  Exploring the actinide-actinide bond: theoretical studies of the chemical bond in Ac2, Th2, Pa2, and U2. , 2006, Journal of the American Chemical Society.

[166]  R. Côté,et al.  Ultracold atom-ion collisions , 2000 .

[167]  Florent Réal,et al.  On the universality of the long-/short-range separation in multiconfigurational density-functional theory. II. Investigating f0 actinide species. , 2009, The Journal of chemical physics.

[168]  Wang,et al.  Photoassociation of Ultracold Atoms: A New Spectroscopic Technique. , 1999, Journal of molecular spectroscopy.

[169]  J. K. Pedersen,et al.  Description of correlation and relativistic effects in calculations of molecular properties , 2004 .