Modular Organization in a Cell: Concepts and Applications

Network biology is conceptualized as an interdisciplinary field, lying at the intersection among graph theory, statistical mechanics and biology. Great efforts have been made to promote the concept of network biology and its various applications in life s

[1]  Sven Bergmann,et al.  Rewiring of the Yeast Transcriptional Network Through the Evolution of Motif Usage , 2005, Science.

[2]  An-Ping Zeng,et al.  The Connectivity Structure, Giant Strong Component and Centrality of Metabolic Networks , 2003, Bioinform..

[3]  A. Hopkins Network pharmacology: the next paradigm in drug discovery. , 2008, Nature chemical biology.

[4]  M. Gerstein,et al.  Genomic analysis of essentiality within protein networks. , 2004, Trends in genetics : TIG.

[5]  Igor Jurisica,et al.  Modeling interactome: scale-free or geometric? , 2004, Bioinform..

[6]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[7]  S. Schreiber,et al.  Printing proteins as microarrays for high-throughput function determination. , 2000, Science.

[8]  Eran Segal,et al.  Module map of stem cell genes guides creation of epithelial cancer stem cells. , 2008, Cell stem cell.

[9]  M. Gerstein,et al.  Structure and evolution of transcriptional regulatory networks. , 2004, Current opinion in structural biology.

[10]  K. Gunsalus,et al.  Network modeling links breast cancer susceptibility and centrosome dysfunction. , 2007, Nature genetics.

[11]  B. Bollobás The evolution of random graphs , 1984 .

[12]  R. Guimerà,et al.  Functional cartography of complex metabolic networks , 2005, Nature.

[13]  E. Raineri,et al.  Evolvability and hierarchy in rewired bacterial gene networks , 2008, Nature.

[14]  I-Min A. Chen,et al.  The Genomes On Line Database (GOLD) in 2007: status of genomic and metagenomic projects and their associated metadata , 2007, Nucleic Acids Res..

[15]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[16]  D. Durocher,et al.  Significant conservation of synthetic lethal genetic interaction networks between distantly related eukaryotes , 2008, Proceedings of the National Academy of Sciences.

[17]  James R. Knight,et al.  A Protein Interaction Map of Drosophila melanogaster , 2003, Science.

[18]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[19]  D. Pe’er,et al.  Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data , 2003, Nature Genetics.

[20]  Gary D Bader,et al.  Global Mapping of the Yeast Genetic Interaction Network , 2004, Science.

[21]  Albert-László Barabási,et al.  Aggregation of topological motifs in the Escherichia coli transcriptional regulatory network , 2004, BMC Bioinformatics.

[22]  Jingtai Han Understanding biological functions through molecular networks , 2008, Cell Research.

[23]  Jun Yu,et al.  Adaptive clustering algorithm for community detection in complex networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Zheng Huang,et al.  Identification of the Proliferation/Differentiation Switch in the Cellular Network of Multicellular Organisms , 2006, PLoS Comput. Biol..

[25]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[26]  Joel S. Bader,et al.  When Proteomes Collide , 2006, Science.

[27]  T. Vicsek,et al.  Clique percolation in random networks. , 2005, Physical review letters.

[28]  Alexander Rives,et al.  Modular organization of cellular networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Albert-László Barabási,et al.  Hierarchical organization in complex networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  S. Horvath,et al.  A General Framework for Weighted Gene Co-Expression Network Analysis , 2005, Statistical applications in genetics and molecular biology.

[32]  G. Church,et al.  Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae , 2001, Nature Genetics.

[33]  C. Waddington Canalization of Development and the Inheritance of Acquired Characters , 1942, Nature.

[34]  R. Ozawa,et al.  A comprehensive two-hybrid analysis to explore the yeast protein interactome , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Ajit Varki,et al.  Human uniqueness: genome interactions with environment, behaviour and culture , 2008, Nature Reviews Genetics.

[36]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[37]  R. Sharan,et al.  Network-based prediction of protein function , 2007, Molecular systems biology.

[38]  S. Bergmann,et al.  Comparative Gene Expression Analysis by a Differential Clustering Approach: Application to the Candida albicans Transcription Program , 2005, PLoS genetics.

[39]  H. Lehrach,et al.  A Human Protein-Protein Interaction Network: A Resource for Annotating the Proteome , 2005, Cell.

[40]  Alan M. Moses,et al.  Conservation and Evolution of Cis-Regulatory Systems in Ascomycete Fungi , 2004, PLoS biology.

[41]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[42]  B. Berger,et al.  Herpesviral Protein Networks and Their Interaction with the Human Proteome , 2006, Science.

[43]  A. Monaco,et al.  Molecular evolution of FOXP2, a gene involved in speech and language , 2002, Nature.

[44]  Naama Barkai,et al.  Comparative biology: beyond sequence analysis. , 2007, Current opinion in biotechnology.

[45]  R. Albert Scale-free networks in cell biology , 2005, Journal of Cell Science.

[46]  H. Bussey,et al.  Exploring genetic interactions and networks with yeast , 2007, Nature Reviews Genetics.

[47]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[48]  An-Ping Zeng,et al.  Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach , 2004, BMC Bioinformatics.

[49]  Nagasuma R. Chandra,et al.  Metabolome Based Reaction Graphs of M. tuberculosis and M. leprae: A Comparative Network Analysis , 2007, PloS one.

[50]  Sven Bergmann,et al.  Defining transcription modules using large-scale gene expression data , 2004, Bioinform..

[51]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[52]  D. Gifford,et al.  Tissue-specific transcriptional regulation has diverged significantly between human and mouse , 2007, Nature Genetics.

[53]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[54]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[55]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[56]  Sean R. Collins,et al.  Conservation and Rewiring of Functional Modules Revealed by an Epistasis Map in Fission Yeast , 2008, Science.

[57]  A. Barabasi,et al.  A Protein–Protein Interaction Network for Human Inherited Ataxias and Disorders of Purkinje Cell Degeneration , 2006, Cell.

[58]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[59]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[60]  J. Han,et al.  A modular network model of aging , 2007, Molecular systems biology.

[61]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[62]  K. Komurov,et al.  Revealing static and dynamic modular architecture of the eukaryotic protein interaction network , 2007, Molecular Systems Biology.

[63]  Albert-László Barabási,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[64]  Huiming Ding,et al.  The synthetic genetic interaction spectrum of essential genes , 2005, Nature Genetics.

[65]  U. Alon,et al.  Spontaneous evolution of modularity and network motifs. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  S. Bergmann,et al.  Similarities and Differences in Genome-Wide Expression Data of Six Organisms , 2003, PLoS biology.

[67]  Roded Sharan,et al.  Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[68]  A. Barabasi,et al.  Lethality and centrality in protein networks , 2001, Nature.

[69]  Mario Medvedovic,et al.  Bayesian hierarchical model for transcriptional module discovery by jointly modeling gene expression and ChIP-chip data , 2007, BMC Bioinformatics.

[70]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[71]  A. Barabasi,et al.  Human disease classification in the postgenomic era: A complex systems approach to human pathobiology , 2007, Molecular systems biology.

[72]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Igor Jurisica,et al.  Efficient estimation of graphlet frequency distributions in protein-protein interaction networks , 2006, Bioinform..

[74]  Albert-László Barabási,et al.  The Activity Reaction Core and Plasticity of Metabolic Networks , 2005, PLoS Comput. Biol..

[75]  Lan V. Zhang,et al.  Evidence for dynamically organized modularity in the yeast protein–protein interaction network , 2004, Nature.

[76]  M. Gerstein,et al.  Genomic analysis of regulatory network dynamics reveals large topological changes , 2004, Nature.

[77]  J. Lieb,et al.  ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. , 2004, Genomics.

[78]  Sven Bergmann,et al.  Iterative signature algorithm for the analysis of large-scale gene expression data. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[79]  Lynn Doucette-Stamm,et al.  A C . elegans genome-scale microRNA network contains composite feedback motifs with high flux capacity , 2008 .

[80]  Copenhagen,et al.  Hide-and-seek on complex networks , 2005 .

[81]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[82]  M. Gerstein,et al.  Genomic analysis of the hierarchical structure of regulatory networks , 2006, Proceedings of the National Academy of Sciences.

[83]  B. Séraphin,et al.  A generic protein purification method for protein complex characterization and proteome exploration , 1999, Nature Biotechnology.

[84]  Arend Hintze,et al.  Evolution of Complex Modular Biological Networks , 2007, PLoS Comput. Biol..

[85]  G. Church,et al.  Modular epistasis in yeast metabolism , 2005, Nature Genetics.

[86]  Gavin MacBeath,et al.  A quantitative protein interaction network for the ErbB receptors using protein microarrays , 2006, Nature.

[87]  Yaniv Ziv,et al.  Revealing modular organization in the yeast transcriptional network , 2002, Nature Genetics.

[88]  Byoung-Tak Zhang,et al.  BIOINFORMATICS ORIGINAL PAPER doi:10.1093/bioinformatics/btm045 Data and text mining Discovery of microRNA–mRNA modules via population-based probabilistic learning , 2007 .

[89]  Susumu Goto,et al.  Extraction of phylogenetic network modules from the metabolic network , 2006, BMC Bioinformatics.

[90]  Andre Levchenko,et al.  Dynamic Properties of Network Motifs Contribute to Biological Network Organization , 2005, PLoS biology.