Metal-ion-dependent gas sorptivity of elastic layer-structured MOFs.

[1]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[2]  Mircea Dincă,et al.  Broadly hysteretic H2 adsorption in the microporous metal-organic framework Co(1,4-benzenedipyrazolate). , 2008, Journal of the American Chemical Society.

[3]  Susumu Kitagawa,et al.  Chemistry of coordination space of porous coordination polymers , 2007 .

[4]  H. Noguchi,et al.  Adsorption of water on three-dimensional pillared-layer metal organic frameworks. , 2007, Journal of colloid and interface science.

[5]  H. Noguchi,et al.  Double-step gas sorption of a two-dimensional metal-organic framework. , 2007, Journal of the American Chemical Society.

[6]  Wei-Qiao Deng,et al.  Improved designs of metal-organic frameworks for hydrogen storage. , 2007, Angewandte Chemie.

[7]  Joseph T Hupp,et al.  Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. , 2007, Journal of the American Chemical Society.

[8]  C. Serre,et al.  Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks , 2007, Science.

[9]  Craig M. Brown,et al.  Neutron powder diffraction study of D2 sorption in Cu3(1,3,5-benzenetricarboxylate)2. , 2006, Journal of the American Chemical Society.

[10]  H. Noguchi,et al.  Novel expansion/shrinkage modulation of 2D layered MOF triggered by clathrate formation with CO(2) molecules. , 2006, Nano letters.

[11]  H. Noguchi,et al.  Probe Molecule-Dependent Particle Density and its Effect on the Supercritical Gas Adsorption Isotherm of Nanoporous Cu Complex Crystals , 2006 .

[12]  K. Gubbins,et al.  GCMC simulations of dynamic structural change of Cu–organic crystals with N2 adsorption , 2006 .

[13]  C. Serre,et al.  Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. , 2005, Journal of the American Chemical Society.

[14]  Omar M Yaghi,et al.  Gas Adsorption Sites in a Large-Pore Metal-Organic Framework , 2005, Science.

[15]  S. Kitagawa,et al.  Flexible microporous coordination polymers , 2005 .

[16]  A. Fletcher,et al.  Flexibility in metal-organic framework materials: impact on sorption properties , 2005 .

[17]  H. Noguchi,et al.  Clathrate-formation mediated adsorption of methane on Cu-complex crystals. , 2005, The journal of physical chemistry. B.

[18]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[19]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[20]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[21]  C. Serre,et al.  Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53. , 2003, Chemical communications.

[22]  Davide M. Proserpio,et al.  POLYCATENATION, POLYTHREADING AND POLYKNOTTING IN COORDINATION NETWORK CHEMISTRY , 2003 .

[23]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[24]  H. Noguchi,et al.  Hydrogen-bond change-associated gas adsorption in inorganic-organic hybrid microporous crystals , 2002 .

[25]  A. J. Blake,et al.  Supramolecular design of one-dimensional coordination polymers based on silver(I) complexes of aromatic nitrogen-donor ligands , 2001 .

[26]  M. Sakata,et al.  The large Debye–Scherrer camera installed at SPring-8 BL02B2 for charge density studies , 2001 .

[27]  M. Zaworotko,et al.  From molecules to crystal engineering: supramolecular isomerism and polymorphism in network solids. , 2001, Chemical reviews.

[28]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[29]  K. Kaneko,et al.  Hydrogen bond-regulated microporous nature of copper complex-assembled microcrystals , 2001 .

[30]  K. Kaneko,et al.  Molecular Geometry-Sensitive Filling in Semi-Rectangular Micropores of Organic−Inorganic Hybrid Crystals , 2000 .

[31]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[32]  J. Zubieta,et al.  Organisch‐anorganische Hybridmaterialien: von „einfachen”︁ Koordinationspolymeren zu Molybdänoxiden mit Organodiamin‐Templaten , 1999 .

[33]  J. Zubieta,et al.  Organic-Inorganic Hybrid Materials: From "Simple" Coordination Polymers to Organodiamine-Templated Molybdenum Oxides. , 1999, Angewandte Chemie.

[34]  D. Do,et al.  Characterizing the Micropore Size Distribution of Activated Carbon Using Equilibrium Data of Many Adsorbates at Various Temperatures , 1997 .

[35]  W. Steele,et al.  Interactions of diatomic molecules with graphite , 1987 .

[36]  A. Buckingham,et al.  Quadrupole moments of some simple molecules , 1968 .

[37]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[38]  H. Noguchi,et al.  Evaluation of an Effective Gas Storage Amount of Latent Nanoporous Cu-Based Metal−Organic Framework , 2007 .