Not every finite lattice is embeddable in the recursively enumerable degrees

Abstract A certain lattice with eight elements is shown to be not embeddable as a lattice in the recursively enumerable degrees. This refutes the well-known Embedding Conjecture which asserted that every finite lattice could be so embedded.

[1]  J. Shoenfield The decision problem for recursively enumerable degrees , 1975 .

[2]  G. Sacks ON THE DEGREES LESS THAN 0 , 1963 .

[3]  C. E. M. Yates A Minimal Pair of Recursively Enumerable Degrees , 1966, J. Symb. Log..

[4]  Stephen G. Simpson,et al.  First-order theory of the degrees of recursive unsolvabilityl , 1977 .

[5]  C. Spector On Degrees of Recursive Unsolvability , 1956 .

[6]  Stephen G. Simpson,et al.  Degrees of Unsolvability: A Survey of Results , 1977 .

[7]  Gerald E. Sacks,et al.  The Recursively Enumerable Degrees are Dense , 1964 .

[8]  Alistair H. Lachlan,et al.  Lower Bounds for Pairs of Recursively Enumerable Degrees , 1966 .

[9]  Anil Nerode,et al.  Second order logic and first order theories of reducibility orderings , 1980 .

[10]  Robert W. Robinson,et al.  Interpolation and Embedding in the Recursively Enumerable Degrees , 1971 .

[11]  G. Sacks Degrees of unsolvability , 1965 .

[12]  M. Lerman Initial segments of the degrees of unsolvability , 1971 .

[13]  A. H. Lachlan Distributive Initial Segments of the Degrees of Unsolvability , 1968 .

[14]  Alistair H. Lachlan Embedding nondistributive lattices in the recursively enumerable degrees , 1972 .

[15]  S. K. Thomason Sublattices of the Recursively Enumerable Degrees , 1971 .

[16]  Alistair H. Lachlan,et al.  Countable initial segments of the degrees of unsolvability , 1976, Journal of Symbolic Logic.

[17]  Emil L. Post,et al.  The Upper Semi-Lattice of Degrees of Recursive Unsolvability , 1954 .

[18]  Emil L. Post Recursively enumerable sets of positive integers and their decision problems , 1944 .