A Note on Constant-Free A Posteriori Error Estimates
暂无分享,去创建一个
[1] W. Prager,et al. Approximations in elasticity based on the concept of function space , 1947 .
[2] H. Weinberger,et al. An optimal Poincaré inequality for convex domains , 1960 .
[3] M. E. Bogovskii. Solution of the first boundary value problem for the equation of continuity of an incompressible medium , 1979 .
[4] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[5] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[6] T. Hughes,et al. Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .
[7] T. Hughes,et al. Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .
[8] Rüdiger Verführt,et al. A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.
[9] Rüdiger Verfürth,et al. Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation , 1998 .
[10] Philippe Destuynder,et al. Explicit error bounds in a conforming finite element method , 1999, Math. Comput..
[11] M. Bebendorf. A Note on the Poincaré Inequality for Convex Domains , 2003 .
[12] Pekka Neittaanmäki,et al. Reliable Methods for Computer Simulation: Error Control and a Posteriori Estimates , 2004 .
[13] Rüdiger Verfürth,et al. Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..
[14] Sergey Grosman,et al. AN EQUILIBRATED RESIDUAL METHOD WITH A COMPUTABLE ERROR APPROXIMATION FOR A SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEM ON ANISOTROPIC FINITE ELEMENT MESHES , 2006 .
[15] Dietrich Braess,et al. Equilibrated residual error estimator for edge elements , 2007, Math. Comput..
[16] Martin Vohralík,et al. Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems , 2009 .
[17] Andreas Veeser,et al. Explicit Upper Bounds for Dual Norms of Residuals , 2009, SIAM J. Numer. Anal..
[18] Martin Vohralík,et al. Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems , 2010, J. Comput. Appl. Math..