A Note on Constant-Free A Posteriori Error Estimates

In this note we look at constant-free a posteriori error estimates from a different perspective. We show that they can be interpreted as an alternative way of expressing the residual of a finite element approximation and thus fit into the same framework as other a posteriori error estimates such as residual error indicators. Our approach also reveals that, when applied to singularly perturbed reaction-diffusion or convection-diffusion problems, constant-free a posteriori error estimates will not be fully robust unless extra measures are taken.

[1]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[2]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[3]  M. E. Bogovskii Solution of the first boundary value problem for the equation of continuity of an incompressible medium , 1979 .

[4]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[5]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[6]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[7]  T. Hughes,et al.  Stabilized finite element methods. I: Application to the advective-diffusive model , 1992 .

[8]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[9]  Rüdiger Verfürth,et al.  Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation , 1998 .

[10]  Philippe Destuynder,et al.  Explicit error bounds in a conforming finite element method , 1999, Math. Comput..

[11]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[12]  Pekka Neittaanmäki,et al.  Reliable Methods for Computer Simulation: Error Control and a Posteriori Estimates , 2004 .

[13]  Rüdiger Verfürth,et al.  Robust A Posteriori Error Estimates for Stationary Convection-Diffusion Equations , 2005, SIAM J. Numer. Anal..

[14]  Sergey Grosman,et al.  AN EQUILIBRATED RESIDUAL METHOD WITH A COMPUTABLE ERROR APPROXIMATION FOR A SINGULARLY PERTURBED REACTION-DIFFUSION PROBLEM ON ANISOTROPIC FINITE ELEMENT MESHES , 2006 .

[15]  Dietrich Braess,et al.  Equilibrated residual error estimator for edge elements , 2007, Math. Comput..

[16]  Martin Vohralík,et al.  Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems , 2009 .

[17]  Andreas Veeser,et al.  Explicit Upper Bounds for Dual Norms of Residuals , 2009, SIAM J. Numer. Anal..

[18]  Martin Vohralík,et al.  Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection-diffusion-reaction problems , 2010, J. Comput. Appl. Math..