Self-recovery function of Sc-O/W(100) system as Schottky emitter

[1]  T. Tsujita,et al.  Surface properties of Sc–O/W(1 0 0) system as emitter at room and high temperatures , 2003 .

[2]  T. Tsujita,et al.  Low‐energy electron diffraction study of atomic structure of Sc–O/W(100) surface acting as Schottky emitter at high temperatures , 2003 .

[3]  T. Tsujita,et al.  Development of Unique Specimen Holder for LEED-AES Study at High Temperatures , 2002 .

[4]  R. Shimizu,et al.  Characterization of Sc–O/W(100) Surface as Schottky Emitter: Work Function Change for Activation Processing , 2000 .

[5]  T. Ohshima,et al.  Tungsten Schottky emitters with reservoirs of metal oxide or nitride , 1999 .

[6]  P. A. Duine,et al.  A model system for scandate cathodes , 1997 .

[7]  Y. Irokawa,et al.  Behavior of zirconium in the ZrOW(100) system at high temperature, studied by ISS, AES and work-function measurements , 1995 .

[8]  Keiji Watanabe,et al.  Investigation of Sc/sub 2/O/sub 3/ behavior in Sc/sub 2/O/sub 3/-dispersed oxide cathodes , 1990 .

[9]  Shigehiko Yamamoto,et al.  Electron Emission Properties and Surface Atom Behavior of an Impregnated Cathode Coated with Tungsten Thin Film Containing Sc2O3 , 1986 .

[10]  R. Shimizu,et al.  Quantitative AES analysis of coevaporated Cu/Ni films and the effects of ion sputtering on them: experiments at liquid nitrogen and room temperature , 1978 .

[11]  R. Shimizu Characterization of a refractory surface at a high temperature applied to the Zr-O/W(100) system. On self-recovery function , 1998 .