On the controllability of the 1-D isentropic Euler equation

We study the controllability problem for the one-dimensional Euler isentropic system, both in Eulerian and Lagrangian coordinates, by means of boundary controls, in the context of weak entropy solutions. We give a sufficient condition on the initial and final states under which the first one can be steered to the latter.

[1]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[2]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[3]  F. Ancona,et al.  On the Attainable Set for Scalar Nonlinear Conservation Laws with Boundary Control , 1998 .

[4]  T. Horsin,et al.  On the controllability of the burger equation , 1998 .

[5]  Ta-Tsien Li,et al.  Exact Boundary Controllability for Quasi-Linear Hyperbolic Systems , 2002, SIAM J. Control. Optim..

[6]  Olivier Glass,et al.  Exact boundary controllability of 3-D Euler equation , 2000 .

[7]  Steven Schochet,et al.  Sufficient conditions for local existence via Glimm's scheme for large BV data , 1991 .

[8]  Karine Beauchard,et al.  Controllability of a quantum particle in a moving potential well , 2006 .

[9]  Karine Beauchard,et al.  Local controllability of a 1-D Schrödinger equation , 2005 .

[10]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[11]  H. Alber,et al.  Local existence of weak solutions to the quasi-linear wave equation for large initial values , 1985 .

[12]  F. Ancona,et al.  Some results on the boundary control of systems of conservation laws , 2002 .

[13]  J. Coron On the controllability of 2-D incompressible perfect fluids , 1996 .

[14]  R. Colombo,et al.  Continuous Dependence for 2×2 Conservation Laws with Boundary , 1997 .

[15]  R. J. Diperna Global solutions to a class of nonlinear hyperbolic systems of equations , 1973 .

[16]  A. Majda Compressible fluid flow and systems of conservation laws in several space variables , 1984 .

[17]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[18]  A. Bressan,et al.  Unique solutions of 2x2 conservation laws with large data , 1995 .

[19]  David H. Wagner,et al.  Equivalence of the Euler and Lagrangian equations of gas dynamics for weak solutions , 1987 .

[20]  P. Souganidis,et al.  Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates , 1998 .

[21]  P. Lax,et al.  Decay of solutions of systems of nonlinear hyperbolic conservation laws , 1970 .

[22]  D. Serre Systems of conservation laws , 1999 .

[23]  Gui-Qiang G. Chen,et al.  The Cauchy Problem for the Euler Equations for Compressible Fluids , 2002 .

[24]  Fabio Ancona,et al.  On the Attainable Set for Temple Class Systems with Boundary Controls , 2005, SIAM J. Control. Optim..

[25]  Olivier Glass,et al.  On the controllability of the Vlasov–Poisson system , 2003 .

[26]  P. Floch,et al.  Boundary conditions for nonlinear hyperbolic systems of conservation laws , 1988 .

[27]  Jean-Michel Coron,et al.  Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations , 2002 .

[28]  Günter Leugering,et al.  Global boundary controllability of the de St. Venant equations between steady states , 2003 .

[29]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[30]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[31]  Giuseppe Maria Coclite,et al.  On the Boundary Control of Systems of Conservation Laws , 2002, SIAM J. Control. Optim..

[32]  L. Hsiao,et al.  The Riemann problem and interaction of waves in gas dynamics , 1989 .

[33]  M. Sablé-Tougeron Stabilité de la structure d'une solution de Riemann à deux grands chocs , 1998, ANNALI DELL UNIVERSITA DI FERRARA.

[34]  A. Corli,et al.  Perturbations of Bounded Variation of a Strong Shock Wave , 1997 .

[35]  K. Trivisa,et al.  On the L1 Well Posedness of Systems of Conservation Laws near Solutions Containing Two Large Shocks , 2002 .