A Review on Finite Element Modeling and Simulation of the Anterior Cruciate Ligament Reconstruction

The anterior cruciate ligament (ACL) constitutes one of the most important stabilizing tissues of the knee joint whose rapture is very prevalent. ACL reconstruction (ACLR) from a graft is a surgery which yields the best outcome. Taking into account the complicated nature of this operation and the high cost of experiments, finite element (FE) simulations can become a valuable tool for evaluating the surgery in a pre-clinical setting. The present study summarizes, for the first time, the current advancement in ACLR in both clinical and computational level. It also emphasizes on the material modeling and properties of the most popular grafts as well as modeling of different surgery techniques. It can be concluded that more effort is needed to be put toward more realistic simulation of the surgery, including also the use of two bundles for graft representation, graft pretension and artificial grafts. Furthermore, muscles and synovial fluid need to be included, while patellofemoral joint is an important bone that is rarely used. More realistic models are also required for soft tissues, as most articles used isotropic linear elastic models and springs. In summary, accurate and realistic FE analysis in conjunction with multidisciplinary collaboration could contribute to ACLR improvement provided that several important aspects are carefully considered.

[1]  R J Minns,et al.  The role of the fibrous components and ground substance in the mechanical properties of biological tissues: a preliminary investigation. , 1973, Journal of biomechanics.

[2]  Chao Wan,et al.  The finite element analysis of three grafts in the anterior cruciate ligament reconstruction , 2011, 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI).

[3]  A Shirazi-Adl,et al.  Biomechanics of passive knee joint in drawer: load transmission in intact and ACL-deficient joints. , 2003, The Knee.

[4]  D P Pioletti,et al.  Biomechanical evaluation of intra-articular and extra-articular procedures in anterior cruciate ligament reconstruction: a finite element analysis. , 2007, Clinical biomechanics.

[5]  Scott L Zeger,et al.  A systematic review of anterior cruciate ligament reconstruction with autograft compared with allograft. , 2009, The Journal of bone and joint surgery. American volume.

[6]  Walter Herzog,et al.  Effect of fluid boundary conditions on joint contact mechanics and applications to the modeling of osteoarthritic joints. , 2004, Journal of biomechanical engineering.

[7]  Ahmet Erdemir,et al.  A multiscale framework for evaluating three-dimensional cell mechanics in fibril-reinforced poroelastic tissues with anatomical cell distribution - Analysis of chondrocyte deformation behavior in mechanically loaded articular cartilage. , 2020, Journal of biomechanics.

[8]  A B Wymenga,et al.  The effect of different graft tensioning in anterior cruciate ligament reconstruction: a prospective randomized study. , 1998, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[9]  A Van Haver,et al.  Transportal femoral drilling creates more horizontal ACL graft orientation compared to transtibial drilling: A 3D CT imaging study. , 2016, The Knee.

[10]  Anke Schmid,et al.  Standard Handbook Of Biomedical Engineering And Design , 2016 .

[11]  Jong Keun Seon,et al.  Current Trends in Anterior Cruciate Ligament Reconstruction , 2013, Knee surgery & related research.

[12]  Kyriacos A Athanasiou,et al.  The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. , 2011, Biomaterials.

[13]  António Completo,et al.  Análise biomecânica da reconstrução do ligamento cruzado anterior , 2019, Revista Brasileira de Ortopedia.

[14]  E. Baer,et al.  The multicomposite structure of tendon. , 1978, Connective tissue research.

[15]  V A Samaranayake,et al.  Surface strain variation in human patellar tendon and knee cruciate ligaments. , 1990, Journal of biomechanical engineering.

[16]  Jon K. Sekiya,et al.  Anterior cruciate ligament anatomy and function relating to anatomical reconstruction , 2006, Knee Surgery, Sports Traumatology, Arthroscopy.

[17]  R K Korhonen,et al.  Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. , 2010, Osteoarthritis and cartilage.

[18]  Freddie H. Fu,et al.  Biomechanical Analysis of an Anatomic Anterior Cruciate Ligament Reconstruction , 2002, The American journal of sports medicine.

[19]  F. Noyes,et al.  Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. , 1984, The Journal of bone and joint surgery. American volume.

[20]  A. E. Holdo̸,et al.  Fluid Structure Interaction Modelling , 2004 .

[21]  Tae Soo Bae,et al.  Effect of femoral tunnel positions on graft stress in outside‐in ACL reconstruction surgery during continuous knee motion: A simulation study , 2017, The international journal of medical robotics + computer assisted surgery : MRCAS.

[22]  Piia Suomalainen,et al.  Double-Bundle Versus Single-Bundle Anterior Cruciate Ligament Reconstruction: A Prospective Randomized Study With 10-Year Results , 2017, The American journal of sports medicine.

[23]  T. Järvelä Double-bundle versus single-bundle anterior cruciate ligament reconstruction: a prospective, randomize clinical study , 2007, Knee Surgery, Sports Traumatology, Arthroscopy.

[24]  Jamaluddin Mahmud,et al.  Effects of Screw Materials in Anterior Cruciate Ligament Reconstruction using Finite Element Analysis , 2012 .

[25]  P S Walker,et al.  Effects of tibial components on load transfer in the upper tibia. , 1982, Clinical orthopaedics and related research.

[26]  Giacomo Placella,et al.  ACL Reconstruction: Choosing the Graft. , 2013, Joints.

[27]  Joseph Fox,et al.  Emerging Trends in Anterior Cruciate Ligament Reconstruction , 2016, Journal of Knee Surgery.

[28]  Andrew D Pearle,et al.  Single-Bundle Anterior Cruciate Ligament Reconstruction , 2009, The American journal of sports medicine.

[29]  Arsi Harilainen,et al.  Cross-pin femoral fixation versus metal interference screw fixation in anterior cruciate ligament reconstruction with hamstring tendons: results of a controlled prospective randomized study with 2-year follow-up. , 2005, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[30]  L A Spyrou,et al.  Multiscale modeling of skeletal muscle tissues based on analytical and numerical homogenization. , 2019, Journal of the mechanical behavior of biomedical materials.

[31]  Clare K Fitzpatrick,et al.  Validation of predicted patellofemoral mechanics in a finite element model of the healthy and cruciate-deficient knee. , 2016, Journal of biomechanics.

[32]  Roger Lyon,et al.  Current Strategies and Future Directions to Optimize ACL Reconstruction in Adolescent Patients , 2018, Front. Surg..

[33]  Scott Tashman,et al.  Anatomic Single- and Double-Bundle Anterior Cruciate Ligament Reconstruction, Part 1 , 2011, The American journal of sports medicine.

[34]  Nico Verdonschot,et al.  The influence of ligament modelling strategies on the predictive capability of finite element models of the human knee joint. , 2017, Journal of biomechanics.

[35]  D L Butler,et al.  Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. , 1986, Journal of biomechanics.

[36]  K Kaneda,et al.  Effects of Initial Graft Tension on Clinical Outcome After Anterior Cruciate Ligament Reconstruction , 1997, The American journal of sports medicine.

[37]  António Completo,et al.  Biomechanical Evidence on Anterior Cruciate Ligament Reconstruction * , 2019, Revista Brasileira de Ortopedia.

[38]  Bin Wang,et al.  Post-operative analysis of ACL tibial fixation , 2009, Knee Surgery, Sports Traumatology, Arthroscopy.

[39]  L Blankevoort,et al.  Ligament-bone interaction in a three-dimensional model of the knee. , 1991, Journal of biomechanical engineering.

[40]  Jan Victor,et al.  Tunnel placement in ACL reconstruction surgery: smaller inter-tunnel angles and higher peak forces at the femoral tunnel using anteromedial portal femoral drilling—a 3D and finite element analysis , 2018, Knee Surgery, Sports Traumatology, Arthroscopy.

[41]  Brian R Wolf,et al.  Optimizing Graft Placement in Anterior Cruciate Ligament Reconstruction: A Finite Element Analysis , 2016, The Journal of Knee Surgery.

[42]  D. E. Cooper,et al.  The strength of the central third patellar. tendon graft , 1993, The American journal of sports medicine.

[43]  Konstantinos Moustakas,et al.  Personalized Knee Geometry Modeling Based on Multi-Atlas Segmentation and Mesh Refinement , 2020, IEEE Access.

[44]  H. Kim,et al.  Tension changes within the bundles of anatomic double-bundle anterior cruciate ligament reconstruction at different knee flexion angles: a study using a 3-dimensional finite element model. , 2011, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[45]  D Stanev,et al.  ACL Reconstruction Decision Support , 2015, Methods of Information in Medicine.

[46]  D P Pioletti,et al.  Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons. , 1998, Journal of biomechanics.

[47]  Emma Loveman,et al.  Autograft or allograft for reconstruction of anterior cruciate ligament: a health economics perspective , 2019, Knee Surgery, Sports Traumatology, Arthroscopy.

[48]  J. Fasel,et al.  Healing of the transected anterior cruciate ligament in the rabbit. , 1991, The Journal of bone and joint surgery. American volume.

[49]  R. Warren,et al.  Replacement of the anterior cruciate ligament using a patellar tendon allograft. An experimental study. , 1986, The Journal of bone and joint surgery. American volume.

[50]  Charles H. Brown,et al.  Hamstring tendon grafts for reconstruction of the anterior cruciate ligament: biomechanical evaluation of the use of multiple strands and tensioning techniques. , 1999, The Journal of bone and joint surgery. American volume.

[51]  Brian R Wolf,et al.  Effect of ACL reconstruction graft size on simulated Lachman testing: a finite element analysis. , 2013, The Iowa orthopaedic journal.

[52]  A. Weiler,et al.  The Influence of Screw Geometry on Hamstring Tendon Interference Fit Fixation , 2000, The American journal of sports medicine.

[53]  M. Bendjaballah,et al.  Biomechanics of the human knee joint in compression: reconstruction, mesh generation and finite element analysis , 1995 .

[54]  Freddie H Fu,et al.  Anatomic Double-Bundle Anterior Cruciate Ligament Reconstruction , 2008 .

[55]  Fares S. Haddad,et al.  A literature review of autograft and allograft anterior cruciate ligament reconstruction , 2007, Knee Surgery, Sports Traumatology, Arthroscopy.

[56]  Tae Soo Bae,et al.  Biomechanical Effect of Tunnel Positions and Pre-tension Forces on Implanted Graft Stress and Strain During Outside-in ACL Reconstruction Surgery: A Simulation Study , 2020 .

[57]  Markos Petousis,et al.  Evaluation of an intact, an ACL-deficient, and a reconstructed human knee joint finite element model , 2016, Computer methods in biomechanics and biomedical engineering.

[58]  B Calvo,et al.  Influence of the tunnel angle in ACL reconstructions on the biomechanics of the knee joint. , 2006, Clinical biomechanics.

[59]  D. B. Burr,et al.  Shear Strength and Fatigue Properties of Human Cortical Bone Determined from Pure Shear Tests , 2001, Calcified Tissue International.

[60]  R K Korhonen,et al.  Optimal graft stiffness and pre-strain restore normal joint motion and cartilage responses in ACL reconstructed knee. , 2016, Journal of biomechanics.

[61]  I. Harrington,et al.  A bioengineering analysis of force actions at the knee in normal and pathological gait. , 1976, Biomedical engineering.

[62]  P. Than,et al.  Comparative study of autograft or allograft in primary anterior cruciate ligament reconstruction , 2004, International Orthopaedics.

[63]  R Huiskes,et al.  The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage. , 2005, Medical engineering & physics.

[64]  Freddie H. Fu,et al.  Current Trends in Anterior Cruciate Ligament Reconstruction , 1999, The American journal of sports medicine.

[65]  Ali Hosseini,et al.  Anterior cruciate ligament reconstruction and cartilage contact forces--A 3D computational simulation. , 2015, Clinical biomechanics.

[66]  Bin Li,et al.  Anteromedial versus transtibial technique in single-bundle autologous hamstring ACL reconstruction: a meta-analysis of prospective randomized controlled trials , 2017, Journal of Orthopaedic Surgery and Research.

[67]  Kavin Khatri,et al.  Single-Bundle Anterior Cruciate Ligament Reconstruction , 2018, Recent Advances in Arthroscopic Surgery.

[68]  M. L. Hull,et al.  Effect of the Angle of the Femoral and Tibial Tunnels in the Coronal Plane and Incremental Excision of the Posterior Cruciate Ligament on Tension of an Anterior Cruciate Ligament Graft: An in Vitro Study , 2003, The Journal of bone and joint surgery. American volume.

[69]  J. Otis,et al.  The effects of sectioning of the posterior cruciate ligament and the posterolateral complex on the articular contact pressures within the knee. , 1993, The Journal of bone and joint surgery. American volume.

[70]  B. F. Morrey,et al.  A Long-Term, Prospective, Randomized Study Comparing Biodegradable and Metal Interference Screws in Anterior Cruciate Ligament Reconstruction Surgery: Radiographic Results and Clinical Outcome , 2011 .

[71]  Harry E Rubash,et al.  In vivo tibiofemoral cartilage deformation during the stance phase of gait. , 2010, Journal of biomechanics.

[72]  J A Weiss,et al.  Computational modeling of ligament mechanics. , 2001, Critical reviews in biomedical engineering.

[73]  L. A. Spyroua,et al.  Muscle-driven finite element simulation of human foot movements , 2012 .

[74]  Jeremy Suggs,et al.  The effect of graft stiffness on knee joint biomechanics after ACL reconstruction--a 3D computational simulation. , 2003, Clinical biomechanics.

[75]  J. Weiss,et al.  Subject‐specific finite element analysis of the human medial collateral ligament during valgus knee loading , 2003, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[76]  D. D. Anderson Effects of sectioning of the posterior cruciate ligament and the posterolateral complex on the articular contact pressures within the knee. , 1995, The Journal of bone and joint surgery. American volume.

[77]  Nico Verdonschot,et al.  A novel approach for optimal graft positioning and tensioning in anterior cruciate ligament reconstructive surgery based on the finite element modeling technique. , 2020, The Knee.

[78]  M. Chizari,et al.  Numerical Analysis of an ACL Reconstructed Knee , 2009 .

[79]  Peter S. Walker,et al.  Does Anteromedial Portal Drilling Improve Footprint Placement in Anterior Cruciate Ligament Reconstruction? , 2016, Clinical orthopaedics and related research.

[80]  Johan Bellemans,et al.  Anatomy of the anterolateral ligament of the knee , 2013, Journal of anatomy.

[81]  F. Girgis,et al.  The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. , 1975, Clinical orthopaedics and related research.

[82]  M. Doblaré,et al.  A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction. , 2005, Clinical biomechanics.

[83]  T. Fukubayashi,et al.  The contact area and pressure distribution pattern of the knee. A study of normal and osteoarthrotic knee joints. , 1980, Acta orthopaedica Scandinavica.

[84]  Yaghoub Dabiri,et al.  Recent Advances in Computational Mechanics of the Human Knee Joint , 2013, Comput. Math. Methods Medicine.

[85]  F. Noyes,et al.  The strength of the anterior cruciate ligament in humans and Rhesus monkeys. , 1976, The Journal of bone and joint surgery. American volume.

[86]  Qiang Xu,et al.  Biomechanical Evaluation of Different Techniques in Double Bundle Anterior Cruciate Ligament Reconstruction Using Finite Element Analysis , 2012 .

[87]  Yon-Sik Yoo,et al.  Changes in ACL length at different knee flexion angles: an in vivo biomechanical study , 2010, Knee Surgery, Sports Traumatology, Arthroscopy.

[88]  C B Frank,et al.  Ligament structure, physiology and function. , 2004, Journal of musculoskeletal & neuronal interactions.

[89]  A. Kampen,et al.  The effect of different graft tensioning in anterior cruciate ligament reconstruction: A prospective randomized study , 1998 .

[90]  A Amirfazli,et al.  A three-dimensional finite element stress analysis for tunnel placement and buttons in anterior cruciate ligament reconstructions. , 2005, Journal of biomechanics.

[91]  S. H. Lo,et al.  Finite element implementation , 1996 .

[92]  Alexander Otto,et al.  The ACL-deficient knee and the prevalence of meniscus and cartilage lesions: a systematic review and meta-analysis (CRD42017076897) , 2019, Archives of Orthopaedic and Trauma Surgery.

[93]  A. Amis,et al.  Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. , 1991, The Journal of bone and joint surgery. British volume.

[94]  Sudhir Kumar,et al.  Graft choices for anterior cruciate ligament reconstruction , 2015, Indian journal of orthopaedics.

[95]  K Bak,et al.  Reconstruction of anterior cruciate ligament deficient knees in soccer players with an iliotibial band autograft , 2001, Scandinavian journal of medicine & science in sports.

[96]  Serhat Mutlu,et al.  Comparison of Anteromedial and Transtibial ACL Reconstruction Using Expandable Fixation. , 2017, Orthopedics.

[97]  Bin Wang,et al.  Experimental and numerical analysis of screw fixation in anterior cruciate ligament reconstruction , 2008, World Congress on Engineering.

[98]  Andrew A. Amis,et al.  Anatomy and Biomechanics of the Posterior Cruciate Ligament , 1999 .

[99]  S L Woo,et al.  Biomechanics of knee ligament healing, repair and reconstruction. , 1997, Journal of biomechanics.

[100]  Frank Cb,et al.  Ligament structure, physiology and function. , 2004 .

[101]  Lutz Dürselen,et al.  Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review , 2014, Front. Bioeng. Biotechnol..

[102]  Patrick Smolinski,et al.  Biomechanical comparison of different graft positions for single-bundle anterior cruciate ligament reconstruction , 2012, Knee Surgery, Sports Traumatology, Arthroscopy.

[103]  Bin Wang,et al.  Post-Operative Assessment of an Implant Fixation in Anterior Cruciate Ligament Reconstructive Surgery , 2011, Journal of Medical Systems.

[104]  J. Jurvelin,et al.  Deformation of articular cartilage during static loading of a knee joint--experimental and finite element analysis. , 2014, Journal of biomechanics.

[105]  Chao Wan,et al.  Finite element simulations of different hamstring tendon graft lengths and related fixations in anterior cruciate ligament reconstruction , 2017, Medical & Biological Engineering & Computing.

[106]  Geon-Hee Kim,et al.  Finite element study on the anatomic transtibial technique for single-bundle anterior cruciate ligament reconstruction , 2015, Medical & Biological Engineering & Computing.

[107]  J. Weiss,et al.  Finite element implementation of incompressible, transversely isotropic hyperelasticity , 1996 .

[108]  Constantinos N Maganaris,et al.  Human patellar tendon stiffness is restored following graft harvest for anterior cruciate ligament surgery. , 2009, Journal of biomechanics.

[109]  Braden C Fleming,et al.  The effect of skeletal maturity on functional healing of the anterior cruciate ligament. , 2010, The Journal of bone and joint surgery. American volume.

[110]  R. Sah,et al.  Effect of synovial fluid on boundary lubrication of articular cartilage. , 2007, Osteoarthritis and cartilage.

[111]  Armando F. Vidal,et al.  Anterior cruciate ligament reconstruction: A literature review of the anatomy, biomechanics, surgical considerations, and clinical outcomes , 2005 .

[112]  P. Mahapatra,et al.  Anterior cruciate ligament repair – past, present and future , 2018, Journal of Experimental Orthopaedics.

[113]  Anindya Basu,et al.  Transportal versus transtibial drilling technique of creating femoral tunnel in arthroscopic anterior cruciate ligament reconstruction using hamstring tendon autograft. , 2012, Journal of the Indian Medical Association.

[114]  S L Woo,et al.  A validated three-dimensional computational model of a human knee joint. , 1999, Journal of biomechanical engineering.

[115]  Charles H. Brown,et al.  Medial portal technique for single-bundle anatomical Anterior Cruciate Ligament (ACL) reconstruction , 2013, International Orthopaedics.

[116]  R. Ogden,et al.  Hyperelastic modelling of arterial layers with distributed collagen fibre orientations , 2006, Journal of The Royal Society Interface.

[117]  Raju Vaishya,et al.  Current Trends in Anterior Cruciate Ligament Reconstruction: A Review , 2015, Cureus.

[118]  J B Finlay,et al.  In vitro strain distribution in the proximal tibia. Effect of varus-valgus loading in the normal and osteoarthritic knee. , 1984, Clinical orthopaedics and related research.

[119]  Ming Zhang,et al.  Deterioration of Stress Distribution Due to Tunnel Creation in Single-Bundle and Double-Bundle Anterior Cruciate Ligament Reconstructions , 2012, Annals of Biomedical Engineering.

[120]  Alberto Ventura,et al.  Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature , 2010, International Orthopaedics.

[121]  P. Chambat,et al.  Graft fixation in cruciate ligament reconstruction. , 2001, The American journal of sports medicine.

[122]  D. Griffin,et al.  Finite-Element Analysis , 1975 .

[123]  Jaroslav Hron,et al.  Fluid-structure interaction with applications in biomechanics , 2007, Nonlinear Analysis: Real World Applications.