Definability in the Recursively Enumerable Degrees
暂无分享,去创建一个
[1] Robert W. Robinson,et al. Interpolation and Embedding in the Recursively Enumerable Degrees , 1971 .
[2] Rodney G. Downey. Lattice Nonembeddings and Initial Segments of the Recursively Enumerable Degrees , 1990, Ann. Pure Appl. Log..
[3] Chen C. Chang,et al. Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .
[4] R. Soare. Recursively enumerable sets and degrees , 1987 .
[5] Richard A. Shore,et al. On homogeneity and definability in the first-order theory of the Turing degrees , 1982, Journal of Symbolic Logic.
[6] Richard A. Shore. Finitely generated codings and the degrees r.e. in a degree , 1982 .
[7] Saharon Shelah,et al. The undecidability of the recursively enumerable degrees , 1982 .
[8] Richard A. Shore,et al. Undecidability and 1-Types in the Recursively Enumerable Degrees , 1993, Ann. Pure Appl. Log..
[9] Richard A. Shore,et al. Working below a low2 recursively enumerably degree , 1990, Arch. Math. Log..
[10] Carl G. Jockusch,et al. Pseudojump operators. I. The r.e. case , 1983 .
[11] Alistair H. Lachlan. Embedding nondistributive lattices in the recursively enumerable degrees , 1972 .
[12] Emil L. Post. Recursively enumerable sets of positive integers and their decision problems , 1944 .
[13] Alistair H. Lachlan. The Impossibility of finding Relative Complements for Recursively Enumerable Degrees , 1966, J. Symb. Log..
[14] Robert I. Soare,et al. An algebraic decomposition of the recursively enumerable degrees and the coincidence of several degree classes with the promptly simple degrees , 1984 .
[15] Gerald E. Sacks,et al. The Recursively Enumerable Degrees are Dense , 1964 .
[16] G. Sacks. ON THE DEGREES LESS THAN 0 , 1963 .
[17] S. Shelah,et al. Annals of Pure and Applied Logic , 1991 .
[18] J. McKinsey. Review: Emil L. Post, Recursively Enumerable Sets of Positive Integers and Their Decision Problems , 1945, Journal of Symbolic Logic.
[19] Gerald E. Sacks,et al. Recursive enumerability and the jump operator , 1963 .
[20] Wilfrid Hodges,et al. Model Theory: The existential case , 1993 .
[21] R A Shore. The homogeneity conjecture. , 1979, Proceedings of the National Academy of Sciences of the United States of America.
[22] R. Shore. The Theory of the Degrees below 0 , 1981 .
[23] Alistair H. Lachlan,et al. Lower Bounds for Pairs of Recursively Enumerable Degrees , 1966 .
[24] R. Friedberg,et al. TWO RECURSIVELY ENUMERABLE SETS OF INCOMPARABLE DEGREES OF UNSOLVABILITY (SOLUTION OF POST'S PROBLEM, 1944). , 1957, Proceedings of the National Academy of Sciences of the United States of America.
[25] Manuel Lerman,et al. Degrees of Unsolvability: Local and Global Theory , 1983 .
[26] A. Lachlan. A recursively enumerable degree which will not split over all lesser ones , 1976 .
[27] R. Soare,et al. Not every finite lattice is embeddable in the recursively enumerable degrees , 1980 .
[28] C. E. M. Yates. A Minimal Pair of Recursively Enumerable Degrees , 1966, J. Symb. Log..