Hole-transporting materials for low donor content organic solar cells: Charge transport and device performance

[1]  S. Barlow,et al.  Hole Transport in Low-Donor-Content Organic Solar Cells. , 2018, The journal of physical chemistry letters.

[2]  A. Mark,et al.  Morphology of a Bulk Heterojunction Photovoltaic Cell with Low Donor Concentration. , 2018, ACS applied materials & interfaces.

[3]  H. Ade,et al.  A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells. , 2018, Journal of the American Chemical Society.

[4]  Yang Yang,et al.  Low-bandgap conjugated polymers enabling solution-processable tandem solar cells , 2017 .

[5]  P. Meredith,et al.  On the unipolarity of charge transport in methanofullerene diodes , 2017, npj Flexible Electronics.

[6]  Chang-Qi Ma,et al.  Thiophene dendrimer-based low donor content solar cells , 2016 .

[7]  Paul E. Shaw,et al.  Charge Generation Pathways in Organic Solar Cells: Assessing the Contribution from the Electron Acceptor. , 2016, Chemical reviews.

[8]  I. Kassal,et al.  Slower carriers limit charge generation in organic semiconductor light-harvesting systems , 2016, Nature Communications.

[9]  J. Hummelen,et al.  Strategy for Enhancing the Dielectric Constant of Organic Semiconductors Without Sacrificing Charge Carrier Mobility and Solubility , 2015 .

[10]  S. Cheung,et al.  Hole-Transporting Spirothioxanthene Derivatives as Donor Materials for Efficient Small-Molecule-Based Organic Photovoltaic Devices , 2014 .

[11]  Y. Koide,et al.  Diamond Schottky diodes with ideality factors close to 1 , 2014 .

[12]  Ajay K. Pandey,et al.  Advantage of suppressed non-Langevin recombination in low mobility organic solar cells , 2014 .

[13]  C. Brabec,et al.  Increased Open‐Circuit Voltage of Organic Solar Cells by Reduced Donor‐Acceptor Interface Area , 2014, Advanced materials.

[14]  William J. Potscavage,et al.  Comparison of small amounts of polycrystalline donor materials in C70-based bulk heterojunction photovoltaics and optimization of dinaphthothienothiophene based photovoltaic , 2014 .

[15]  B. Philippa,et al.  The impact of hot charge carrier mobility on photocurrent losses in polymer-based solar cells , 2014, Scientific Reports.

[16]  Graeme P. Williams,et al.  Role of the donor material and the donor–acceptor mixing ratio in increasing the efficiency of Schottky junction organic solar cells , 2013 .

[17]  William J. Potscavage,et al.  Highly efficient bulk heterojunction photovoltaic cell based on tris(4-(5- phenylthiophen-2-yl)phenyl)amine and C70 combined with optimized electron transport layer , 2013 .

[18]  Tracey M. Clarke,et al.  Charge carrier mobility, bimolecular recombination and trapping in polycarbazole copolymer:fullerene (PCDTBT:PCBM) bulk heterojunction solar cells , 2012 .

[19]  P. Meredith,et al.  Injected charge extraction by linearly increasing voltage for bimolecular recombination studies in organic solar cells , 2012 .

[20]  Thomas Kirchartz,et al.  Sensitivity of the Mott–Schottky Analysis in Organic Solar Cells , 2012 .

[21]  Hongkun Tian,et al.  Bulk Heterojunction Photovoltaic Cells with Low Donor Concentration , 2011, Advanced materials.

[22]  P. Meredith,et al.  A dendronised polymer for bulk heterojunction solar cells , 2011 .

[23]  K. Müllen,et al.  Phenylene bridged boron-nitrogen containing dendrimers. , 2010, Organic letters.

[24]  Yasuhiko Shirota,et al.  Photo- and electroactive amorphous molecular materials—molecular design, syntheses, reactions, properties, and applications , 2005 .

[25]  Valentin D. Mihailetchi,et al.  Hole Transport in Poly(phenylene vinylene)/Methanofullerene Bulk‐Heterojunction Solar Cells , 2004 .

[26]  Paul A. van Hal,et al.  Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. , 2003, Angewandte Chemie.

[27]  P. Blom,et al.  Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene) , 1997 .

[28]  K. Yoshizawa,et al.  ESR of the cationic triradical of 1,3,5-tris(diphenylamino)benzene , 1992 .

[29]  Y. Shirota,et al.  Methyl-substituted Derivatives of 1,3,5-Tris(diphenylamino)benzene as a Novel Class of Amorphous Molecular Materials , 1991 .

[30]  N. P. Buu‐Hoï 831. The scope of the knoevenagel synthesis of aromatic secondary amines , 1952 .