Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery

[1]  Hankui K. Zhang,et al.  Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data , 2013 .

[2]  Susan L. Ustin,et al.  Classification Trees for Aquatic Vegetation Community Prediction From Imaging Spectroscopy , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[3]  P. Gong,et al.  Phenology-based Crop Classification Algorithm and its Implications on Agricultural Water Use Assessments in California’s Central Valley , 2012 .

[4]  P. Atkinson,et al.  Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture , 2012 .

[5]  C. Milesi,et al.  Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help? , 2012 .

[6]  Andrea Baraldi,et al.  Satellite Image Automatic Mapper™ (SIAM™ ) - A Turnkey Software Executable for Automatic Near Real-Time Multi-Sensor Multi-Resolution Spectral Rule-Based Preliminary Classification of Spaceborne Multi-Spectral Images , 2011 .

[7]  D. Tilman,et al.  Global food demand and the sustainable intensification of agriculture , 2011, Proceedings of the National Academy of Sciences.

[8]  P. Gong,et al.  A phenology-based approach to map crop types in the San Joaquin Valley, California , 2011 .

[9]  William J. Sacks,et al.  Crop management and phenology trends in the U.S. Corn Belt: Impacts on yields, evapotranspiration and energy balance , 2011 .

[10]  J. Six,et al.  Object-based crop identification using multiple vegetation indices, textural features and crop phenology , 2011 .

[11]  Zhengwei Yang,et al.  Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program , 2011 .

[12]  Wfp,et al.  The State of Food Insecurity in the World , 2011 .

[13]  Xiaofeng Li,et al.  Improved land cover mapping using random forests combined with landsat thematic mapper imagery and ancillary geographic data. , 2010 .

[14]  P. Gong,et al.  Accuracy Assessment Measures for Object-based Image Segmentation Goodness , 2010 .

[15]  Yang Shao,et al.  Mapping Cropland and Major Crop Types across the Great Lakes Basin using MODIS-NDVI Data , 2010 .

[16]  Xavier Pons,et al.  Thematic Accuracy Consequences in Cadastre Land-cover Enrichment from a Pixel and from a Polygon Perspective , 2009 .

[17]  Obi Reddy P. Gangalakunta,et al.  Global irrigated area map (GIAM), derived from remote sensing, for the end of the last millennium , 2009 .

[18]  Jonathan Cheung-Wai Chan,et al.  Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery , 2008 .

[19]  Erwin Ulrich,et al.  Evaluation of the onset of green-up in temperate deciduous broadleaf forests derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data , 2008 .

[20]  N. Ramankutty,et al.  Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000 , 2008 .

[21]  N. Ramankutty,et al.  Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000 , 2008 .

[22]  B. Wardlow,et al.  Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains , 2008 .

[23]  B. Wardlow,et al.  Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains , 2007 .

[24]  Stephen V. Stehman,et al.  Estimating the effect of crop classification error on evapotranspiration derived from remote sensing in the lower Colorado River basin, USA , 2007 .

[25]  Hongjie Xie,et al.  Suitable remote sensing method and data for mapping and measuring active crop fields , 2007 .

[26]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[27]  P. Thenkabail,et al.  Irrigated area mapping in heterogeneous landscapes with MODIS time series, ground truth and census data, Krishna Basin, India , 2006 .

[28]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Paul M. Mather,et al.  Some issues in the classification of DAIS hyperspectral data , 2006 .

[30]  Rick L. Lawrence,et al.  Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest) , 2006 .

[31]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[32]  Mustafa Turker,et al.  Sequential masking classification of multi‐temporal Landsat7 ETM+ images for field‐based crop mapping in Karacabey, Turkey , 2005 .

[33]  José A. Martínez-Casasnovas,et al.  Mapping multi-year cropping patterns in small irrigation districts from time-series analysis of Landsat TM images , 2005 .

[34]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[35]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[36]  A. Huete,et al.  Overview of the radiometric and biophysical performance of the MODIS vegetation indices , 2002 .

[37]  Curtis E. Woodcock,et al.  Monitoring large areas for forest change using Landsat: Generalization across space, time and Landsat sensors , 2001 .

[38]  Conghe Song,et al.  Forest mapping with a generalized classifier and Landsat TM data , 2001 .

[39]  N. Ishitsuka,et al.  Crop discrimination with multitemporal SPOT/HRV data in the Saga Plains, Japan , 2001 .

[40]  W. Cohen,et al.  An efficient and accurate method for mapping forest clearcuts in the Pacific Northwest using Landsat imagery , 1998 .

[41]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[42]  Prasanna H. Gowda,et al.  Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices , 1997 .

[43]  Martin D. Levine,et al.  Dynamic Measurement of Computer Generated Image Segmentations , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  John E. Estes,et al.  Studying the Earth's Vegetation from Space , 1984 .

[45]  G. Badhwar,et al.  Automatic corn-soybean classification using Landsat MSS data. I - Near-harvest crop proportion estimation. II - Early season crop proportion estimation , 1984 .

[46]  F. Hall,et al.  Global Crop Forecasting , 1980, Science.