Opportunistic media access for multirate ad hoc networks

The IEEE 802.11 wireless media access standard supports multiple data rates at the physical layer. Moreover, various auto rate adaptation mechanisms at the medium access layer have been proposed to utilize this multi-rate capability by automatically adapting the transmission rate to best match the channel conditions. In this paper, we introduce the Opportunistic Auto Rate (OAR) protocol to better exploit durations of high-quality channels conditions. The key mechanism of the OAR protocol is to opportunistically send multiple back-to-back data packets whenever the channel quality is good. As channel coherence times typically exceed multiple packet transmission times for both mobile and non-mobile users, OAR achieves significant throughput gains as compared to state-of-the-art auto-rate adaptation mechanisms. Moreover, over longer time scales, OAR ensures that all nodes are granted channel access for the same time-shares as achieved by single-rate IEEE 802.11. We describe mechanisms to implement OAR on top of any existing auto-rate adaptation scheme in a nearly IEEE 802.11 compliant manner. We also analytically study OAR and characterize the gains in throughput as a function of the channel conditions. Finally, we perform an extensive set of ns-2 simulations to study the impact of such factors as node velocity, channel conditions, and topology on the throughput of OAR.

[1]  Haiyun Luo,et al.  A new model for packet scheduling in multihop wireless networks , 2000, MobiCom '00.

[2]  Andreas Almquist,et al.  Evaluation of quality of service schemes for IEEE 802.11 wireless LANs , 2001, Proceedings LCN 2001. 26th Annual IEEE Conference on Local Computer Networks.

[3]  Leo Monteban,et al.  WaveLAN®-II: A high-performance wireless LAN for the unlicensed band , 1997, Bell Labs Technical Journal.

[4]  Ion Stoica,et al.  Packet fair queueing algorithms for wireless networks with location-dependent errors , 1998, Proceedings. IEEE INFOCOM '98, the Conference on Computer Communications. Seventeenth Annual Joint Conference of the IEEE Computer and Communications Societies. Gateway to the 21st Century (Cat. No.98.

[5]  Sem C. Borst,et al.  Dynamic rate control algorithms for HDR throughput optimization , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[6]  Haiyun Luo,et al.  A self-coordinating approach to distributed fair queueing in ad hoc wireless networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).

[7]  Ness B. Shroff,et al.  Transmission scheduling for efficient wireless resource utilization with minimum-performance guarantees , 2001, IEEE 54th Vehicular Technology Conference. VTC Fall 2001. Proceedings (Cat. No.01CH37211).

[8]  Theodore S. Rappaport,et al.  Wireless communications - principles and practice , 1996 .

[9]  John G. Proakis,et al.  Digital Communications , 1983 .

[10]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[11]  Bob O'Hara,et al.  The IEEE 802.11 Handbook: A Designer's Companion , 1999 .

[12]  N. Vaidya,et al.  Fair Scheduling in Broadcast Environments , 1999 .

[13]  V. Bharghavan,et al.  MACAW: A media access protocol for wireless LANs , 1994 .

[14]  Paramvir Bahl,et al.  A rate-adaptive MAC protocol for multi-Hop wireless networks , 2001, MobiCom '01.

[15]  R. Srikant,et al.  Fair scheduling in wireless packet networks , 1999, TNET.

[16]  Daniel D. Stancil,et al.  Efficient simulation of Ricean fading within a packet simulator , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).