Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices

It has been recognized that the monoclinic double tungstates KY(WO4)2, KGd(WO4)2, and KLu(WO4)2 possess a high potential as rare-earth-ion-doped solid-state laser materials, partly due to the high absorption and emission cross sections of rare-earth ions when doped into these materials. Besides, their high refractive indexes make these materials potentially suitable for applications that require optical gain and high power in integrated optics, with rather high integration density. We review the recent advances in the field of bulk lasers in these materials and present our work toward the demonstration of waveguide lasers and their integration with other optical structures on a chip.

[1]  Georges Boulon,et al.  Overview of the best Yb3+-doped laser crystals , 2001 .

[2]  U. Griebner,et al.  Continuous-wave laser oscillation of Yb/sup 3+/ in monoclinic KLu(WO/sub 4/)/sub 2/ , 2004, IEEE Journal of Quantum Electronics.

[3]  Adolf Giesen,et al.  Highly Yb-doped oxides for thin-disc lasers , 2005 .

[4]  A. Giesen,et al.  Ultrafast thin-disk Yb:KY(WO4)2 regenerative amplifier with a 200-kHz repetition rate. , 2004, Optics letters.

[5]  J. Gavaldà,et al.  Linear Thermal Expansion Tensor in KRE(WO4)2 (RE=Gd, Y, Er, Yb) Monoclinic Crystals , 2001 .

[6]  Ursula Keller,et al.  High power Yb:KGW and Yb:KYW thin disk laser operation , 2001, CLEO 2001.

[7]  Valentin Petrov,et al.  Passively mode-locked Yb:KYWlaser pumped by a tapered diode laser. , 2002, Optics express.

[8]  Aurelian Crunteanu,et al.  Performance of Ar/sup +/-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources , 2003 .

[9]  U. Griebner,et al.  Efficient Yb:KGW lasers end-pumped by high-power diode bars , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[10]  F. Diaz,et al.  Efficient tunable laser operation of Tm:KGd(WO/sub 4/)/sub 2/ in the continuous-wave regime at room temperature , 2004, IEEE Journal of Quantum Electronics.

[11]  James S. Wilkinson,et al.  Ti:Sapphire waveguide lasers , 2007 .

[12]  Barry J. Feldman,et al.  Sensitivity and stability of a radiation-balanced laser system , 2002 .

[14]  C. Depeursinge,et al.  Femtosecond irradiation induced refractive-index changes and channel waveguiding in bulk Ti/sup 3+/:sapphire , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[15]  Xavier Mateos,et al.  Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2 , 2006 .

[16]  Valentin Petrov,et al.  Efficient Tunable Laser Operation of Tm : KGd ( WO 4 ) 2 in the Continuous-Wave Regime at Room Temperature , 2004 .

[17]  A. Lagatsky,et al.  Pulsed laser operation of Y b-dope d KY(WO(4))(2) and KGd(WO(4))(2). , 1997, Optics letters.

[18]  V. G. Shcherbitsky,et al.  Efficient self-frequency Raman conversion in a passively Q-switched diode-pumped Yb:KGd(WO4)2 laser , 2003 .

[19]  X. Mateos,et al.  Efficient 2-$mu$m Continuous-Wave Laser Oscillation of Tm$^3 + $:KLu(WO$_4$)$_2$ , 2006, IEEE Journal of Quantum Electronics.

[20]  Joachim Hein,et al.  100-fs diode-pumped Yb:KGW mode-locked laser , 2004 .

[21]  U. Keller,et al.  Diode-pumped femtosecond Yb:KGd(WO(4))(2) laser with 1.1-W average power. , 2000, Optics letters.

[22]  Valentin Petrov,et al.  Potassium Ytterbium Tungstate Provides the Smallest Laser Quantum Defect , 2003 .

[23]  Bernard Chambaz,et al.  Liquid phase epitaxy: A versatile technique for the development of miniature optical components in single crystal dielectric media , 1999 .

[24]  U. Griebner,et al.  Growth, optical characterization, and laser operation of a stoichiometric crystal KYb(WO 4 ) 2 , 2002 .

[25]  A. Crunteanu,et al.  Ti:sapphire rib channel waveguide fabricated by reactive ion etching of a planar waveguide , 2002, CLEO 2002.

[26]  G. Mourou,et al.  Diode-pumped Kerr-lens mode-locked Yb:KY(WO(4))(2) laser. , 2001, Optics letters.

[27]  Igory V. Mochalov,et al.  Laser and nonlinear properties of the potassium gadolinium tungstate laser crystal KGd(WO4)2:Nd3+-(KGW:Nd) , 1997 .

[28]  U. Griebner,et al.  Continuous-Wave Laser Oscillation of Yb^3+ in Monoclinic KLu( WO_4)_2 , 2004 .

[29]  Georges Boulon,et al.  Monoclinic Tungstates KDy(WO 4) 2 and KLu(WO 4) 2 - New χ( 3)-Active Crystals for Laser Raman Shifters , 1998 .

[30]  M. Mond,et al.  Optical characterization of Yb,Tm:KYW crystal concerning laser application , 2002 .

[31]  M. Mond,et al.  Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm , 2002 .

[32]  Valeriy Badikov,et al.  Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2 , 2002 .

[33]  Wieslaw Strek,et al.  Influence of Yb concentration on Yb:KYW laser properties , 2000 .

[34]  Magdalena Aguiló,et al.  Growth and characterisation of monoclinic KGd1−xREx(WO4)2 single crystals , 1999 .

[35]  Magdalena Aguiló,et al.  Growth of β-KGd1 − xNdx(WO4)2 single crystals in K2W2O7 solvents , 1996 .

[36]  Alexander A. Sobol,et al.  Raman spectroscopy of crystals for stimulated Raman scattering , 1999 .

[37]  Xavier Mateos,et al.  Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix , 2002 .

[38]  U. Griebner,et al.  Tm:KY(WO(4))(2) waveguide laser. , 2007, Optics express.

[39]  T. Jensen,et al.  CW laser performance of Yb and Er,Yb doped tungstates , 1997 .

[40]  Valentin Petrov,et al.  Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion. , 2005, Optics letters.

[41]  U. Griebner,et al.  Continuous-wave lasing of a stoichiometric Yb laser material: KYb(WO4)2. , 2003, Optics Letters.

[42]  Ruediger Grunwald,et al.  Growth, optical characterization, and laser operation of epitaxial Yb:KY(WO4)2∕KY(WO4)2 composites with monoclinic structure , 2004 .

[43]  E. Golikova,et al.  Measurement of gain and evaluation of photon avalanche efficiency in 10% Tm:KY(WO4)2 crystal pumped by free-running Nd:YAG laser , 2003 .

[44]  U. Griebner,et al.  Laser operation with nearly diffraction-limited output from a Yb:YAG multimode channel waveguide. , 1999, Optics letters.

[45]  A. A. Pavlyuk,et al.  New Stimulated Emission Channels of Pr$^{\bf{3+}}$ and Tm$^{\bf{3+}}$ Ions in Monoclinic KR(WO$_{\bf 4}$)$_{\bf 2}$ Type Crystals with Ordered Structure (R=Y and Gd) , 1997 .

[46]  Lloyd L. Chase,et al.  Quantum electronic properties of the Na/sub 3/Ga/sub 2/Li/sub 3/F/sub 12/:Cr/sup 3+/ laser , 1988 .

[47]  G. Boulon,et al.  Nucleation, morphology and spectroscopic properties of Yb3+-doped KY(WO4)2 crystals grown by the top nucleated floating crystal method , 1999 .

[48]  F. Gardillou,et al.  Buried channel waveguides in Yb-doped KY(WO4)2 crystals fabricated by femtosecond laser irradiation , 2007 .

[49]  Xavier Mateos,et al.  Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host , 2007 .

[50]  D. Shepherd,et al.  Single-transverse-mode Ti:sapphire rib waveguide laser. , 2005, Optics express.

[51]  A. Demidovich,et al.  Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser , 2002 .

[52]  W. Krupke,et al.  Ytterbium solid-state lasers. The first decade , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[53]  A. Lagatsky,et al.  Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO(4))(2) laser. , 2000, Optics letters.

[54]  Xavier Mateos,et al.  Efficient 2- m Continuous-Wave Laser Oscillation of Tm :KLu(WO ) , 2006 .

[55]  Alain Brenier,et al.  A new evaluation of Yb3+-doped crystals for laser applications , 2001 .

[56]  Markus Pollnau,et al.  Low-temperature liquid-phase epitaxy and optical waveguiding of rare-earth-ion-doped KY(WO4)2 thin layers , 2004 .

[57]  Markus Pollnau,et al.  Lu, Gd codoped KY(WO(4))(2):Yb epitaxial layers: towards integrated optics based on KY(WO(4))(2). , 2007, Optics letters.

[58]  A. A. Pavlyuk,et al.  LASERS: The spectroscopy and lasing of monoclinic Tm:KY(WO4)2 crystals , 2000 .

[59]  Valentin Petrov,et al.  Yb-doped KY(WO4)2 planar waveguide laser. , 2006, Optics letters.

[60]  Y. Romanyuk,et al.  Optical waveguides in laser crystals , 2007 .

[61]  A. Lagatsky,et al.  Diode-pumped CW lasing of Yb:KYW and Yb:KGW , 1999 .

[62]  Andy Steinmann,et al.  High-peak-power pulses from a cavity-dumped Yb:KY(WO4)2 oscillator. , 2005, Optics letters.

[63]  G. Erbert,et al.  Passively mode-locked Yb:KLu(WO4)2 oscillators. , 2005, Optics express.

[64]  Valentin Petrov,et al.  Novel ytterbium and thulium lasers based on the monoclinic KLu(WO4)2 crystalline host , 2007, International School on Quantum Electronics: Laser Physics and Applications.

[65]  V. G. Shcherbitsky,et al.  240-fs pulses with 22-W average power from a mode-locked thin-disk Yb:KY(WO(4))(2) laser. , 2002, Optics letters.

[66]  T. Fan,et al.  Room-temperature diode-pumped Yb:YAG laser. , 1991, Optics letters.

[67]  Markus Pollnau,et al.  Designable buried waveguides in sapphire by proton implantation , 2004 .

[68]  G. Holtom,et al.  Mode-locked Yb:KGW laser longitudinally pumped by polarization-coupled diode bars. , 2006, Optics letters.

[69]  R Baets,et al.  Calculation of radiation loss in integrated-optic tapers and Y-junctions. , 1982, Applied optics.

[70]  D. Shepherd,et al.  Room-temperature continuous-wave operation of Ti:sapphire buried channel-waveguide lasers fabricated via proton implantation. , 2006, Optics letters.