Converting SVDD scores into probability estimates: Application to outlier detection

To enable post-processing, the output of a support vector data description (SVDD) should be transformed into a calibrated probability, as it can be done for SVM. But standard SVDD only estimate a single level set and do not provide such probabilities. We present a method for estimating these probabilities from SVDD scores. The first step of our approach uses a generalization of the SVDD model that estimate simultaneously various coherent level sets. Then we introduce two calibration mechanisms for converting these level sets into probabilities. A synthetic dataset and datasets from the UCI repository are used to compare the performance of our method against a robust kernel density estimator in an outlier detection task, illustrating the interest of our approach.

[1]  Jean-Philippe Vert,et al.  Consistency and Convergence Rates of One-Class SVMs and Related Algorithms , 2006, J. Mach. Learn. Res..

[2]  Clayton D. Scott,et al.  Robust kernel density estimation , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[3]  R. Fisher,et al.  Limiting forms of the frequency distribution of the largest or smallest member of a sample , 1928, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  José Ragot,et al.  Multi-task learning with one-class SVM , 2014, Neurocomputing.

[5]  Hans-Peter Kriegel,et al.  LOF: identifying density-based local outliers , 2000, SIGMOD 2000.

[6]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[7]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[8]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[9]  Robert P. W. Duin,et al.  Support Vector Data Description , 2004, Machine Learning.

[10]  Rasmus Larsen,et al.  The Entire Regularization Path for the Support Vector Domain Description , 2006, MICCAI.

[11]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[12]  Bernhard Schölkopf,et al.  Support Vector Machines as Probabilistic Models , 2011, ICML.

[13]  Albert Thomas,et al.  Calibration of One-Class SVM for MV set estimation , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[14]  Gyemin Lee,et al.  Nested support vector machines , 2010, IEEE Trans. Signal Process..

[15]  Natalia Markovich Nonparametric estimation of a heavy-tailed density , 2011 .

[16]  Bernhard Schölkopf,et al.  Estimating the Support of a High-Dimensional Distribution , 2001, Neural Computation.

[17]  Jing Gao,et al.  Converting Output Scores from Outlier Detection Algorithms into Probability Estimates , 2006, Sixth International Conference on Data Mining (ICDM'06).

[18]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[19]  Hans-Peter Kriegel,et al.  Interpreting and Unifying Outlier Scores , 2011, SDM.

[20]  Vivekanand Gopalkrishnan,et al.  Mining Outliers with Ensemble of Heterogeneous Detectors on Random Subspaces , 2010, DASFAA.

[21]  David A. Clifton,et al.  A review of novelty detection , 2014, Signal Process..

[22]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[23]  Michael Lindenbaum,et al.  Learning High-Density Regions for a Generalized Kolmogorov-Smirnov Test in High-Dimensional Data , 2012, NIPS.

[24]  Anthony K. H. Tung,et al.  Mining top-n local outliers in large databases , 2001, KDD '01.

[25]  Robert D. Nowak,et al.  Learning Minimum Volume Sets , 2005, J. Mach. Learn. Res..

[26]  Michael R. Lyu,et al.  Multi-task Learning for one-class classification , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[27]  T.Y. Lin,et al.  Anomaly detection , 1994, Proceedings New Security Paradigms Workshop.

[28]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[29]  Michael Lindenbaum,et al.  q-OCSVM: A q-Quantile Estimator for High-Dimensional Distributions , 2013, NIPS.