Sparse second moment analysis for elliptic problems in stochastic domains

We consider the numerical solution of elliptic boundary value problems in domains with random boundary perturbations. Assuming normal perturbations with small amplitude and known mean field and two-point correlation function, we derive, using a second order shape calculus, deterministic equations for the mean field and the two-point correlation function of the random solution for a model Dirichlet problem which are 3rd order accurate in the boundary perturbation size. Using a variational boundary integral equation formulation on the unperturbed, “nominal” boundary and a wavelet discretization, we present and analyze an algorithm to approximate the random solution’s mean and its two-point correlation function at essentially optimal order in essentially $${\mathcal{O}(N)}$$ work and memory, where N denotes the number of unknowns required for consistent discretization of the boundary of the nominal domain.

[1]  Christoph Schwab,et al.  Applications of Mathematics , 2006 .

[2]  Reinhold Schneider,et al.  Wavelet Galerkin Schemes for Boundary Integral Equations-Implementation and Quadrature , 2006, SIAM J. Sci. Comput..

[3]  Wolfgang Dahmen,et al.  Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates , 2006, SIAM J. Numer. Anal..

[4]  H. Bungartz,et al.  Sparse grids , 2004, Acta Numerica.

[5]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[6]  Jacob K. White,et al.  Multiscale Bases for the Sparse Representation of Boundary Integral Operators on Complex Geometry , 2002, SIAM J. Sci. Comput..

[7]  C. Schwab,et al.  NUMERICAL SOLUTION OF PARABOLIC EQUATIONS IN HIGH DIMENSIONS , 2004 .

[8]  Reinhold Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression , 1998 .

[9]  Christoph Schwab,et al.  Sparse finite element methods for operator equations with stochastic data , 2006 .

[10]  Hans-Joachim Bungartz,et al.  Acta Numerica 2004: Sparse grids , 2004 .

[11]  Fabio Nobile,et al.  Worst case scenario analysis for elliptic problems with uncertainty , 2005, Numerische Mathematik.

[12]  Christoph Schwab,et al.  Sparse finite elements for elliptic problems with stochastic loading , 2003, Numerische Mathematik.

[13]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[14]  R. Schneider,et al.  Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .

[15]  Vladimir Maz’ya,et al.  Theory of multipliers in spaces of differentiable functions , 1983 .

[16]  Michel C. Delfour Shapes and Geometries , 1987 .

[17]  Christoph Schwab,et al.  On the extraction technique in boundary integral equations , 1999, Mathematics of Computation.

[18]  J. Planchard,et al.  Une méthode variationnelle d’éléments finis pour la résolution numérique d’un problème extérieur dans $\mathbf {R}^3$ , 1973 .

[19]  J. Simon Differentiation with Respect to the Domain in Boundary Value Problems , 1980 .

[20]  Karsten Eppler,et al.  Optimal Shape Design for Elliptic Equations Via Bie-Methods , 2000 .

[21]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[22]  Christian Lage,et al.  Rapid solution of first kind boundary integral equations in R3 , 2003 .

[23]  Martin Costabel,et al.  Strongly elliptic boundary integral equations for electromagnetic transmission problems , 1988, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[24]  Karsten Eppler,et al.  Boundary integral representations of second derivatives in shape optimization , 2000 .

[25]  W. Dahmen Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.

[26]  S Sauter,et al.  Boundary elements methods. Analysis, numerics and implementation of fast algorithms. (Randelementmethoden. Analyse, Numerik und Implementierung schneller Algorithmen.) , 2004 .

[27]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[28]  H. Triebel Theory Of Function Spaces , 1983 .

[29]  Jacques Simon,et al.  Etude de Problème d'Optimal Design , 1975, Optimization Techniques.

[30]  Reinhold Schneider,et al.  Biorthogonal wavelet bases for the boundary element method , 2004 .

[31]  William Rundell,et al.  A Second Degree Method for Nonlinear Inverse Problems , 1999, SIAM J. Numer. Anal..

[32]  Wolfgang Dahmen,et al.  Compression Techniques for Boundary Integral Equations - Optimal Complexity Estimates , 2006 .