Identifying the potash reservoirs from seismic data by using convolution neural network, constrained by the waveform characteristics of potash reservoirs

[1]  R. G. Crespo,et al.  CNN supported framework for automatic extraction and evaluation of dermoscopy images , 2022, The Journal of Supercomputing.

[2]  Fanchang Zhang,et al.  Seismic data recovery using deep targeted denoising priors in an alternating optimization framework , 2022, GEOPHYSICS.

[3]  Kai-Heng Sang,et al.  Machine learning seismic reservoir prediction method based on virtual sample generation , 2021, Petroleum Science.

[4]  Phuong-Thu Trinh,et al.  Automated first break picking with constrained pooling networks , 2020 .

[5]  Ping Lu,et al.  Swell-noise attenuation: A deep learning approach , 2019 .

[6]  Zhengjie Zhu,et al.  Chlorine isotope analysis of Triassic salt rock and geological significance of ancient salt lake in Sichuan Basin, China , 2019, Carbonates and Evaporites.

[7]  Tapan Mukerji,et al.  Pre-stack inversion using a physics-guided convolutional neural network , 2019, SEG Technical Program Expanded Abstracts 2019.

[8]  J. Ogg,et al.  Sedimentary model of marine evaporites and implications for potash deposits exploration in China , 2019, Carbonates and Evaporites.

[9]  Ning Zhang,et al.  Deep-learning-based seismic data interpolation: A preliminary result , 2019, GEOPHYSICS.

[10]  Jianwei Ma,et al.  Deep learning for denoising , 2018, GEOPHYSICS.

[11]  H. Yin,et al.  Progress in the investigation of potash resources in western China , 2018 .

[12]  Xu Ji,et al.  Seismic fault detection with convolutional neural network , 2018, GEOPHYSICS.

[13]  Tapan Mukerji,et al.  Convolutional neural network for seismic impedance inversion , 2018, GEOPHYSICS.

[14]  Weichang Li,et al.  Classifying geological structure elements from seismic images using deep learning , 2018, SEG Technical Program Expanded Abstracts 2018.

[15]  Yuan Xiao,et al.  Using generative adversarial networks to improve deep-learning fault interpretation networks , 2018, The Leading Edge.

[16]  Andrew Curtis,et al.  Fast probabilistic petrophysical mapping of reservoirs from 3D seismic data , 2012 .

[17]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[18]  Bruce S. Hart,et al.  Comparison of linear regression and a probabilistic neural network to predict porosity from 3‐D seismic attributes in Lower Brushy Canyon channeled sandstones, southeast New Mexico , 2001 .

[19]  A. P. Annan,et al.  Radar sounding in potash mines, Saskatchewan, Canada , 1988 .

[20]  D. Gendzwill UNDERGROUND APPLICATIONS OF SEISMIC MEASUREMENTS IN A SASKATCHEWAN POTASH MINE , 1969 .

[21]  James P. Lewis,et al.  Characterization of a Slim-Hole Gamma-Ray Sonde for Potash Exploration Applications in a Simple Test Pit Environment , 2010 .

[22]  R. Moll,et al.  Predicting Carbonate Permeabilities From Wireline Logs Using a Back-Propagation Neural Network , 1991 .