Faster relaxed multiplication

In previous work, we have introduced several fast algorithms for relaxed power series multiplication (also known under the name on-line multiplication) up to a given order n. The fastest currently known algorithm works over an effective base field K with sufficiently many 2p-th roots of unity and has algebraic time complexity O(n log ne2[EQUATION]). In this paper, we will generalize this algorithm to the cases when K is replaced by an effective ring of positive characteristic or by an effective ring of characteristic zero, which is also torsion-free as a Z-module and comes with an additional algorithm for partial division by integers. In particular, we may take K to be any effective field. We will also present an asymptotically faster algorithm for relaxed multiplication of p-adic numbers.

[1]  Arnold Schönhage,et al.  Schnelle Multiplikation großer Zahlen , 1971, Computing.

[2]  S. Cook,et al.  ON THE MINIMUM COMPUTATION TIME OF FUNCTIONS , 1969 .

[3]  L. Bluestein A linear filtering approach to the computation of discrete Fourier transform , 1970 .

[4]  Alexandre Sedoglavic,et al.  Méthodes seminumériques en algèbre différentielle~; applications à l'étude des propriétés structurelles de systèmes différentiels algébriques en automatique , 2001 .

[5]  Manindra Agrawal,et al.  PRIMES is in P , 2004 .

[6]  V. Shoup New algorithms for finding irreducible polynomials over finite fields , 1990 .

[7]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[8]  Joris van der Hoeven Relaxed resolution of implicit equations , 2009 .

[9]  Jérémy Berthomieu,et al.  Relaxed p-adic Hensel lifting for algebraic systems , 2012, ISSAC.

[10]  I. E. Shparlinskii,et al.  ON PRIMITIVE ELEMENTS IN FINITE FIELDS AND ON ELLIPTIC CURVES , 1992 .

[11]  V. Shoup Searching for primitive roots in finite fields , 1990, Symposium on the Theory of Computing.

[12]  Éric Schost,et al.  A simple and fast online power series multiplication and its analysis , 2016, J. Symb. Comput..

[13]  Daniel J. BERNSTEINf REMOVING REDUNDANCY IN HIGH-PRECISION NEWTON ITERATION , 2004 .

[14]  Joris van der Hoeven,et al.  Relax, but Don't be Too Lazy , 2002, J. Symb. Comput..

[15]  V. Pan,et al.  Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Éric Schost,et al.  Polynomial evaluation and interpolation on special sets of points , 2005, J. Complex..

[18]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[19]  Joris van der Hoeven Relaxed mltiplication using the middle product , 2003, ISSAC.

[20]  Martin Fürer,et al.  Faster integer multiplication , 2007, STOC '07.

[21]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[22]  Mit Press,et al.  A Linear Filtering Approach to the Computation of the Discrete Fourier Transform , 1969 .

[23]  Michael J. Fischer,et al.  Fast On-Line Integer Multiplication , 1974, J. Comput. Syst. Sci..

[24]  Anatolij A. Karatsuba,et al.  Multiplication of Multidigit Numbers on Automata , 1963 .

[25]  Joris van der Hoeven The truncated fourier transform and applications , 2004, ISSAC '04.

[26]  Joris van der Hoeven Notes on the Truncated Fourier Transform , 2012 .

[27]  Joris van der Hoeven Newton's method and FFT trading , 2010, J. Symb. Comput..

[28]  H. T. Kung,et al.  Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.

[29]  J. V. D. Hoeven,et al.  Relaxed algorithms for p-adic numbers , 2011 .

[30]  Joris van der Hoeven New algorithms for relaxed multiplication , 2007, J. Symb. Comput..

[31]  Joris van der Hoeven,et al.  Lazy multiplication of formal power series , 1997, ISSAC.

[32]  L. Rabiner,et al.  The chirp z-transform algorithm and its application , 1969 .

[33]  Erich Kaltofen,et al.  On fast multiplication of polynomials over arbitrary algebras , 1991, Acta Informatica.