A moving mesh finite element method for the two-dimensional Stefan problems

An r -adaptive moving mesh method is developed for the numerical solution of an enthalpy formulation of two-dimensional heat conduction problems with a phase change. The grid is obtained from a global mapping of the physical to the computational domain which is designed to cluster mesh points around the interface between the two phases of the material. The enthalpy equation is discretised using a semiimplicit Galerkin finite element method using linear basis functions. The moving finite element method is applied to problems where the phase front is cusp shaped and where the interface changes topology.

[1]  J. Brackbill An adaptive grid with directional control , 1993 .

[2]  Yogesh Jaluria,et al.  A COMPARISON OF DIFFERENT SOLUTION METHODOLOGIES FOR MELTING AND SOLIDIFICATION PROBLEMS IN ENCLOSURES , 1993 .

[3]  Robert D. Russell,et al.  A Study of Monitor Functions for Two-Dimensional Adaptive Mesh Generation , 1999, SIAM J. Sci. Comput..

[4]  Sergio Idelsohn,et al.  A temperature‐based finite element solution for phase‐change problems , 1986 .

[5]  Weizhang Huang,et al.  A high dimensional moving mesh strategy , 1998 .

[7]  Robert D. Russell,et al.  Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .

[8]  S. Osher,et al.  A Simple Level Set Method for Solving Stefan Problems , 1997, Journal of Computational Physics.

[9]  J. Brackbill,et al.  Adaptive zoning for singular problems in two dimensions , 1982 .

[10]  Peter W. Egolf,et al.  Theory and modeling of phase change materials with and without mushy regions , 1994 .

[11]  Milton E. Rose,et al.  An enthalpy scheme for Stefan problems in several dimensions , 1993 .

[12]  Robert D. Russell,et al.  Moving Mesh Strategy Based on a Gradient Flow Equation for Two-Dimensional Problems , 1998, SIAM J. Sci. Comput..

[13]  Keith Miller,et al.  Design and Application of a Gradient-Weighted Moving Finite Element Code I: in One Dimension , 1998, SIAM J. Sci. Comput..

[14]  Keith Miller,et al.  Moving Finite Elements. I , 1981 .

[15]  A. Dvinsky Adaptive grid generation from harmonic maps on Reimannian manifolds , 1991 .

[16]  M. Cross,et al.  Accurate solutions of moving boundary problems using the enthalpy method , 1981 .

[17]  G. Meyer Multidimensional Stefan Problems , 1973 .

[18]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[19]  John A. Mackenzie,et al.  The Numerical Solution of One-Dimensional Phase Change Problems Using an Adaptive Moving Mesh Method , 2000 .

[20]  Frank Kreith,et al.  Heat transfer with melting or freezing in a wedge , 1973 .

[21]  Ricardo H. Nochetto,et al.  An Adaptive Finite Element Method for Two-Phase Stefan Problems in Two Space Dimensions. II: Implementation and Numerical Experiments , 1991, SIAM J. Sci. Comput..

[22]  A. M. Winslow Numerical Solution of the Quasilinear Poisson Equation in a Nonuniform Triangle Mesh , 1997 .

[23]  Daniel R. Lynch,et al.  Continuously deforming finite elements for the solution of parabolic problems, with and without phase change , 1981 .