The D-Bar Method for Diffuse Optical Tomography: A Computational Study

ABSTRACT The D-bar method at negative energy is numerically implemented. Using the method, we are able to numerically reconstruct potentials and investigate exceptional points at negative energy. Subsequently, applying the method to diffuse optical tomography, a new way of reconstructing the diffusion coefficient from the associated Complex Geometrics Optics solution is suggested and numerically validated.

[1]  D. Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[2]  S R Arridge,et al.  Recent advances in diffuse optical imaging , 2005, Physics in medicine and biology.

[3]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[4]  I. R. Stability estimates for an inverse problem for the Schrödinger equation at negative energy in two dimensions , 2012 .

[5]  S. Siltanen,et al.  D-BAR METHOD AND EXCEPTIONAL POINTS AT POSITIVE ENERGY : A COMPUTATIONAL STUDY , 2014 .

[6]  Matti Lassas,et al.  REGULARIZED D-BAR METHOD FOR THE INVERSE CONDUCTIVITY PROBLEM , 2009 .

[7]  Samuli Siltanen,et al.  Numerical solution method for the dbar-equation in the plane , 2004 .

[8]  Vasilis Ntziachristos,et al.  From finite to infinite volumes: removal of boundaries in diffuse wave imaging. , 2006, Physical review letters.

[9]  E. Lakshtanov,et al.  On reconstruction of complex-valued once differentiable conductivities , 2015, 1511.08780.

[10]  S. Arridge Optical tomography in medical imaging , 1999 .

[11]  David Isaacson,et al.  An implementation of the reconstruction algorithm of A Nachman for the 2D inverse conductivity problem , 2000 .

[12]  John C. Schotland,et al.  Numerical studies of the inverse Born series for diffuse waves , 2009 .

[13]  R. Novikov,et al.  Multidimensional inverse spectral problem for the equation —Δψ + (v(x) — Eu(x))ψ = 0 , 1988 .

[14]  Exceptional points in Faddeev scattering problem , 2014, 1407.1548.

[15]  R. Coifman,et al.  Scattering, transformations spectrales et équations d'évolution non linéaire II , 1981 .

[16]  I. M. Gelfand,et al.  Some aspects of functional analysis and algebra , 1987 .

[17]  S. Arridge,et al.  Optical tomography: forward and inverse problems , 2009, 0907.2586.

[18]  S. Novikov,et al.  Two-dimensional “inverse scattering problem” for negative energies and generalized-analytic functions. I. Energies below the ground state , 1988 .

[19]  Roman Novikov The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator , 1992 .

[20]  E. Lakshtanov,et al.  A global Riemann-Hilbert problem for two-dimensional inverse scattering at fixed energy , 2015, 1509.06495.

[21]  Samuli Siltanen,et al.  Exceptional circles of radial potentials , 2013 .

[22]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[23]  Mark J. Ablowitz,et al.  Multidimensional nonlinear evolution equations and inverse scattering , 1986 .

[24]  S. Moskow,et al.  Convergence and stability of the inverse scattering series for diffuse waves , 2008, 0804.2681.

[25]  Matti Lassas,et al.  Positive-energy D-bar method for acoustic tomography: a computational study , 2013, 1307.2037.

[26]  G. Vainikko Fast Solvers of the Lippmann-Schwinger Equation , 2000 .

[27]  Matteo Santacesaria Stability estimates for an inverse problem for the Schrödinger equation at negative energy in two dimensions , 2012, Applicable Analysis.

[28]  Samuli Siltanen,et al.  Linear and Nonlinear Inverse Problems with Practical Applications , 2012, Computational science and engineering.

[29]  P. Grinevich Scattering transformation at fixed non-zero energy for the two-dimensional Schrödinger operator with potential decaying at infinity , 2000 .