Bibliographical review for reflectance of diffusing media

When light travels through a diffusing medium, the incident radiation is scattered and a part of it is reemitted. The reflected propor- tion is defined as the reflectance and provides the quantification of color sensations. Many authors have tried to derive reflectance values by vari- ous means. This bibliographical synthesis reviews the main theories on the subject, comparing them and especially their assumptions and deri- vations. First, the widely used theory of Kubelka and Munk—which has been proved to be a particular case of Schuster's formula—is described, according to its terms, limits, improvements, and applications. Next, the well-known electromagnetic approach by Mie is presented, along with methods derived from radiative transfer theory, multilayer methods (the ''pile of plates'' due to Stokes), multiflux methods (developed by Mudgett and Richards or Volz for instance), and the corpuscular treatment pro- posed by Silvy. Finally, new methods are listed that allow the calculation of reflectance values, such as Monte Carlo simulations, expert systems, or neural networks. A chronological organization chart is also given to place each work or advance relative to the others. © 2001 Society of Photo-

[1]  G. Kortüm,et al.  Phenomenological Theories of Absorption and Scattering of Tightly Packed Particles , 1969 .

[2]  K. Subbaswamy,et al.  II Surface and Size Effects on the Light Scattering Spectra of Solids , 1981 .

[3]  F. J. Francis,et al.  Food Colorimetry: Theory and Applications , 1975 .

[4]  M. P. Sherman,et al.  Moment methods in radiative transfer problems , 1967 .

[5]  I Karamantscheva,et al.  Smart match. Expert system software package for textile colum formulation. , 1994 .

[6]  Hans G. Völz,et al.  Industrial Color Testing: Fundamentals and Techniques , 1995 .

[7]  Andreas Mandelis,et al.  Perturbation Theoretical Approach to the Generalized Kubelka-Munk Problem in Nonhomogeneous Optical Media , 1992 .

[8]  L. Richards,et al.  Multiple scattering calculations for technology. , 1971, Applied optics.

[9]  P. Kubelka,et al.  New Contributions to the Optics of Intensely Light-Scattering Materials. Part I , 1948 .

[10]  H. Gausman,et al.  Mean Effective Optical Constants of Cotton Leaves , 1970 .

[11]  G. G. Stokes IV. On the intensity of the light reflected from or transmitted through a pile of plates , 1862, Proceedings of the Royal Society of London.

[12]  George J. Zissis,et al.  The Infrared & Electro-Optical Systems Handbook. Sources of Radiation, Volume 1, , 1993 .

[13]  G. Kortüm Kolorimetrie und Spektralphotometrie: Eine Anleitung zur Ausführung von Absorptions-, Fluoreszenz- und Trübungsmessungen an Lösungen , 1942 .

[14]  L. F. C. Friele,et al.  THE APPLICATION OF COLOUR MEASUREMENT IN RELATION TO FIBRE-BLENDING , 1952 .

[15]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[16]  S. E. Orchard Reflection and Transmission of Light by Diffusing Suspensions , 1969 .

[17]  É. Pardoux,et al.  Méthodes de Monte-Carlo pour les équations de transport et de diffusion , 1998 .

[18]  G. Goldfinger,et al.  The color of absorbing scattering substrates. I. The color of fabrics , 1972 .

[19]  R. Berns,et al.  Spectrophotometric color matching based on two‐constant kubelka‐munk theory , 1988 .

[20]  Beer Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten , 1852 .

[21]  C. Tucker,et al.  Leaf optical system modeled as a stochastic process. , 1977, Applied optics.

[22]  Milton Kerker,et al.  CHAPTER 2 – Electromagnetic Waves , 1969 .

[23]  Seibert Q. Duntley,et al.  The Optical Properties of Diffusing Materials , 1942 .

[24]  Soon K. Cho,et al.  Electromagnetic Scattering , 2012 .

[25]  J. D. Kerf,et al.  Light Diffusion in Photographic Layers: Its Influence on Sensitivity and Modulation Transfer* , 1965 .

[26]  W. Blevin,et al.  Total Reflectances of Opaque Diffusers , 1962 .

[27]  Leonid Fukshansky,et al.  Extension of the Kubelka–Munk theory of light propagation in intensely scattering materials to fluorescent media , 1980 .

[28]  A. Schuster Radiation through a foggy atmosphere , 1903 .

[29]  Milton Kerker,et al.  The Scattering of Light and Other Electromagnetic Radiation ~Academic , 1969 .

[30]  Reynald Convert Contribution au développement d'un système expert pour la formulation des recettes de teinture , 1998 .

[31]  The Transparency of Turbid Media , 1927 .

[32]  J. L. Saunderson Calculation of the Color of Pigmented Plastics , 1942 .

[33]  T. Smith The hiding power of diffusing media , 1931 .

[34]  S. Noh,et al.  Light propagation in moderately dense particle systems: a reexamination of the Kubelka-Munk theory. , 1987, Applied optics.

[35]  H. G. Völz Practical pigment testing with the aid of the Kubelka-Munk theory , 1985 .

[36]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[37]  P. Debye Light Scattering in Solutions , 1944 .

[38]  John H. Xin,et al.  Colour‐appearance modeling using feedforward networks with Bayesian regularization method— Part I: Forward model , 2000 .

[39]  E. Allen Basic equations used in computer color matching, II. Tristimulus match, two-constant theory , 1974 .

[40]  Frank H. Shu,et al.  The physics of astrophysics. , 1992 .

[41]  P. E. Pierce,et al.  An analysis of the first surface correction for the color matching of organic coatings from the viewpoint of radiative transfer theory , 1994 .

[42]  T. Sokkar,et al.  Prediction of absorbance from reflectance for an absorbing-scattering fabric , 1997 .

[43]  N. Bouleau,et al.  Numerical methods for stochastic processes , 1993 .

[44]  Richard Gans,et al.  Strahlungsdiagramme ultramikroskopischer Teilchen , 1925 .

[45]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[46]  E. Allen Basic Equations Used in Computer Color Matching , 1966 .

[47]  C J Funk,et al.  Multiple scattering calculations of light propagation in ocean water. , 1973, Applied optics.

[48]  Seyed Hossein Amirshahi,et al.  Applying the Kubelka-Munk Equation to Explain the Color of Blends Prepared from Precolored Fibers , 1994 .

[49]  Lord Rayleigh F.R.S. X. On the electromagnetic theory of light , 1881 .

[50]  Robert T. Marcus,et al.  RADIATIVE TRANSFER THEORY SOLID COLOR-MATCHING CALCULATIONS , 1997 .

[51]  P. S Mudgett,et al.  Multiple scattering calculations for technology II , 1972 .

[52]  E. Richard Cohen,et al.  Neutron Transport Theory , 1959 .

[53]  Nicholas Chako,et al.  Optics of thin films , 1960 .

[54]  L. Silberstein CXIV. The transparency of turbid media , 1927 .

[55]  H. Gausman,et al.  Mean effective optical constants of thirteen kinds of plant leaves. , 1970, Applied optics.

[56]  P. Kubelka Ein Beitrag zur Optik der Farban striche , 1931 .

[57]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[58]  R. Guelke,et al.  The effect of dyes on the reflection of light from textiles , 1934 .

[59]  Light-Scattering Properties of Pigment Suspensions , 1961 .

[60]  R. Berns,et al.  An algorithm for the optimization of kubelka‐munk absorption and scattering coefficients , 1987 .

[61]  Effect of particle size on diffuse reflectance infrared spectra of polystyrene spheres , 1993 .

[62]  M. Kerker,et al.  Multiple scattering in a synthetic foggy atmosphere experimental results , 1972 .

[63]  Gao Zhi-yun,et al.  A COMPARATIVE STUDY OF A CRT COLORIMETRIC PREDICTION MODEL BY NEURAL NETWORKS AND THE MODELS BY CONVENTIONAL METHOD , 1999 .