A Review of Some Monte Carlo Simulation Methods for Turbulent Systems

We provide a brief overview of some Monte Carlo methods which have been used to simulate systems with a turbulent fluid component. We discuss two main classes of simulation approaches: an "Eulerian" class which is based on a random velocity field model defined on a fixed coordinate system, and a "Lagrangian" class in which the motion of fluid particles and immersed particles are instead stochastically modeled. The main aim of this article is to expose these novel simulation approaches to turbulent and complex fluid systems to a broader readership familiar with stochastic processes and to provide some pointers to the literature.

[1]  J. R. Wallis,et al.  Computer Experiments with Fractional Gaussian Noises: Part 3, Mathematical Appendix , 1969 .

[2]  P. Español,et al.  Statistical Mechanics of Dissipative Particle Dynamics. , 1995 .

[3]  Alexandre J. Chorin,et al.  Vorticity and turbulence , 1994 .

[4]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[5]  Non-equilibrium Monte Carlo simulation of decaying Navier–Stokes turbulence , 1999 .

[6]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[7]  Stephen B. Pope,et al.  Consistency conditions for random‐walk models of turbulent dispersion , 1987 .

[8]  D. Thomson Criteria for the selection of stochastic models of particle trajectories in turbulent flows , 1987, Journal of Fluid Mechanics.

[9]  Two-particle stochastic Eulerian–Lagrangian models of turbulent dispersion , 1998 .

[10]  Jean-Pierre Minier,et al.  WALL-BOUNDARY CONDITIONS IN PROBABILITY DENSITY FUNCTION METHODS AND APPLICATION TO A TURBULENT CHANNEL FLOW , 1999 .

[11]  R. Kraichnan,et al.  Anomalous scaling of a randomly advected passive scalar. , 1994, Physical review letters.

[12]  Andrew J. Majda,et al.  Random shearing direction models for isotropic turbulent diffusion , 1994 .

[13]  P. Español,et al.  Dissipative particle dynamics with energy conservation , 1997 .

[14]  Jean-Pierre Minier,et al.  Derivation of a PDF model for turbulent flows based on principles from statistical physics , 1997 .

[15]  Mesoscopic Modelling and Stochastic Simulations of Turbulent Flows , 1996 .

[16]  R. A. Antonia,et al.  THE PHENOMENOLOGY OF SMALL-SCALE TURBULENCE , 1997 .

[17]  Andrew J. Majda Real world turbulence and modern applied mathematics , 2000 .

[18]  Orazgeldy Kurbanmuradov Stochastic Lagrangian Models for Two-Particle Relative Dispersion in High-Reynolds Number Turbulence , 1997, Monte Carlo Methods Appl..

[19]  Jean-Pierre Minier,et al.  Probabilistic approach to turbulent two-phase flows modelling and simulation: theoretical and numerical issues , 2001, Monte Carlo Methods Appl..

[20]  Andrew J. Majda,et al.  A Wavelet Monte Carlo Method for Turbulent Diffusion with Many Spatial Scales , 1994 .

[21]  P. Souganidis,et al.  The Effect of Turbulence on Mixing in Prototype Reaction-Diffusion Systems , 2000 .

[22]  Frans T. M. Nieuwstadt,et al.  Random walk models for particle displacements in inhomogeneous unsteady turbulent flows , 1985 .

[23]  S. Pope Application of the velocity‐dissipation probability density function model to inhomogeneous turbulent flows , 1991 .

[24]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[25]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[26]  J. R. Wallis,et al.  Computer Experiments With Fractional Gaussian Noises: Part 1, Averages and Variances , 1969 .

[27]  M. Avellaneda,et al.  Trapping, percolation, and anomalous diffusion of particles in a two-dimensional random field , 1993 .

[28]  J. Riley,et al.  Equation of motion for a small rigid sphere in a nonuniform flow , 1983 .

[29]  Salvatore Torquato,et al.  Diffusion and geometric effects in passive advection by random arrays of vortices , 1991 .

[30]  R. Lathe Phd by thesis , 1988, Nature.

[31]  Alan R. Kerstein,et al.  Linear-Eddy Modeling of Turbulent Transport. Part 4. Structure of Diffusion Flames , 1992 .

[32]  A. Majda,et al.  SIMPLIFIED MODELS FOR TURBULENT DIFFUSION : THEORY, NUMERICAL MODELLING, AND PHYSICAL PHENOMENA , 1999 .

[33]  Stephen B. Pope,et al.  Filtered mass density function for large-eddy simulation of turbulent reacting flows , 1999, Journal of Fluid Mechanics.

[34]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[35]  K. Sreenivasan Fluid turbulence , 1999 .

[36]  S. Pope,et al.  A pdf modeling study of self‐similar turbulent free shear flows , 1987 .

[37]  R. Carmona,et al.  Massively parallel simulations of motions in a Gaussian velocity field , 1996 .

[38]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[39]  Stephen B. Pope,et al.  Particle method for turbulent flows: integration of stochastic model equations , 1995 .

[40]  J. R. Wallis,et al.  Computer Experiments with Fractional Gaussian Noises: Part 2, Rescaled Ranges and Spectra , 1969 .

[41]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[42]  Alan R. Kerstein,et al.  Linear-eddy modeling of turbulent transport. Part V: Geometry of scalar interfaces , 1991 .

[43]  A. Bourlioux,et al.  An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion , 2000 .

[44]  U. Frisch,et al.  Intermittency in Passive Scalar Advection , 1998, cond-mat/9802192.

[45]  Andrew J. Majda,et al.  Pair dispersion over an inertial range spanning many decades , 1996 .

[46]  A. Monin,et al.  Statistical fluid mechanics: Mechanics of turbulence. Volume 2 /revised and enlarged edition/ , 1975 .

[47]  R. Voss Random Fractal Forgeries , 1985 .

[48]  Andrew J. Majda,et al.  Mathematical models with exact renormalization for turbulent transport, II: Fractal interfaces, non-Gaussian statistics and the sweeping effect , 1992 .

[49]  Multiscaling in Passive Scalar Advection as Stochastic Shape Dynamics , 1997, cond-mat/9711034.

[50]  Ignacio Pagonabarraga,et al.  Self-consistent dissipative particle dynamics algorithm , 1998 .

[51]  Andrew J. Majda,et al.  A Fourier-Wavelet Monte Carlo Method for Fractal Random Fields , 1997 .

[52]  P. Español,et al.  FLUID PARTICLE MODEL , 1998 .

[53]  W. Mccomb,et al.  The physics of fluid turbulence. , 1990 .

[54]  G. A. Mikhaĭlov,et al.  Optimization of Weighted Monte Carlo Methods , 1992 .

[55]  Andrew J. Majda,et al.  Mathematical models with exact renormalization for turbulent transport , 1990 .

[56]  Marcel Lesieur,et al.  Fluid Mechanics and Its Applications , 1997 .

[57]  Andrew J. Majda,et al.  Monte Carlo methods for turbulent tracers with long range and fractal random velocity fields. , 1997, Chaos.

[58]  J. Minier,et al.  On the Lagrangian turbulent dispersion models based on the Langevin equation , 1998 .

[59]  W. Welton,et al.  Two-Dimensional PDF/SPH Simulations of Compressible Turbulent Flows , 1998 .

[60]  P. Espa Dissipative particle dynamics with energy conservation , 1997 .

[61]  Robert H. Kraichnan,et al.  Small‐Scale Structure of a Scalar Field Convected by Turbulence , 1968 .

[62]  R. Kraichnan Diffusion by a Random Velocity Field , 1970 .

[63]  S. Pope The probability approach to the modelling of turbulent reacting flows , 1976 .

[64]  Suresh Menon,et al.  Subgrid mixing and molecular transport modeling in a reacting shear layer , 1996 .

[65]  Jinchao Xu,et al.  Assessment of Numerical Accuracy of PDF/Monte Carlo Methods for Turbulent Reacting Flows , 1999 .

[66]  Andrew J. Majda,et al.  Hierarchical Monte Carlo methods for fractal random fields , 1995 .

[67]  Stephen B. Pope,et al.  Advances in PDF modeling for inhomogeneous turbulent flows , 1998 .

[68]  Dynamics of advected tracers with varying buoyancy , 1994 .

[69]  Alan R. Kerstein,et al.  One-dimensional turbulence: model formulation and application to homogeneous turbulence, shear flows, and buoyant stratified flows , 1999, Journal of Fluid Mechanics.

[70]  J. W. Eastwood,et al.  Springer series in computational physics Editors: H. Cabannes, M. Holt, H.B. Keller, J. Killeen and S.A. Orszag , 1984 .

[71]  Karl K. Sabelfeld Monte Carlo Methods in Boundary Value Problems. , 1991 .

[72]  S. Pope Lagrangian PDF Methods for Turbulent Flows , 1994 .

[73]  Statistical modelling of turbulent motion of particles in random velocity fields , 1989 .

[74]  Jean-Pierre Minier,et al.  PROBABILITY DENSITY FUNCTION MODELING OF DISPERSED TWO-PHASE TURBULENT FLOWS , 1999 .

[75]  Andrew J. Majda,et al.  A new algorithm with plane waves and wavelets for random velocity fields with many spatial scales , 1995 .

[76]  F. Bracco,et al.  Stochastic particle dispersion modeling and the tracer‐particle limit , 1992 .

[77]  Andrew J. Majda,et al.  Subtle statistical behavior in simple models for random advection-diffusion , 1994 .

[78]  W. Wagner,et al.  A stochastic method for solving Smoluchowski's coagulation equation , 1999 .

[79]  P. B. Warren,et al.  DISSIPATIVE PARTICLE DYNAMICS : BRIDGING THE GAP BETWEEN ATOMISTIC AND MESOSCOPIC SIMULATION , 1997 .

[80]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .

[81]  U. Frisch,et al.  Lagrangian method for multiple correlations in passive scalar advection , 1998 .

[82]  S. Krueger Linear Eddy Modeling of Entrainment and Mixing in Stratus Clouds , 1993 .

[83]  J. Viecelli,et al.  Functional representation of power-law random fields and time series , 1991 .

[84]  J. Gass,et al.  Comparative Study of Modeling a Hydrogen Nonpremixed Turbulent Flame , 2000 .

[85]  G. Csanady Turbulent Diffusion in the Environment , 1973 .