An Artificial Molecular Transporter

Abstract The transport of substrates is one of the main tasks of biomolecular machines in living organisms. We report a synthetic small‐molecule system designed to catch, displace, and release molecular cargo in solution under external control. The system consists of a bistable rotaxane that behaves as an acid–base controlled molecular shuttle, whose ring component bears a tether ending with a nitrile group. The latter can be coordinated to a ruthenium complex that acts as the load, and dissociated upon irradiation with visible light. The cargo loading/unloading and ring transfer/return processes are reversible and can be controlled independently. The robust coordination bond ensures that the cargo remains attached to the device while the transport takes place.

[1]  J. Berná,et al.  Light-responsive peptide [2]rotaxanes as gatekeepers of mechanised nanocontainers. , 2015, Chemical communications.

[2]  Sundus Erbas-Cakmak,et al.  Artificial Molecular Machines , 2015, Chemical reviews.

[3]  Hao Li,et al.  An artificial molecular pump. , 2015, Nature nanotechnology.

[4]  A. Credi,et al.  Incorporation of Calix[6]Arene Macrocycles and (Pseudo)Rotaxanes in Bilayer Membranes: Towards Controllable Artificial Liposomal Channels , 2015 .

[5]  Mounir Maaloum,et al.  Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. , 2015, Nature nanotechnology.

[6]  M. Baptista,et al.  Marked improvement in photoinduced cell death by a new tris-heteroleptic complex with dual action: singlet oxygen sensitization and ligand dissociation. , 2014, Journal of the American Chemical Society.

[7]  A. Credi,et al.  Reversible Mechanical Switching of Magnetic Interactions in a Molecular Shuttle , 2014, ChemistryOpen.

[8]  M. Baroncini,et al.  Organic Nanofibers Embedding Stimuli-Responsive Threaded Molecular Components , 2014, Journal of the American Chemical Society.

[9]  F. Coutrot,et al.  A strategy utilizing a recyclable macrocycle transporter for the efficient synthesis of a triazolium-based [2]rotaxane. , 2014, Angewandte Chemie.

[10]  Keiji Hirose,et al.  Axle length does not affect switching dynamics in degenerate molecular shuttles with rigid spacers. , 2014, Journal of the American Chemical Society.

[11]  J. Zink,et al.  An enzymatic chemical amplifier based on mechanized nanoparticles. , 2013, Journal of the American Chemical Society.

[12]  J. F. Stoddart,et al.  Photoexpulsion of surface-grafted ruthenium complexes and subsequent release of cytotoxic cargos to cancer cells from mesoporous silica nanoparticles. , 2013, Journal of the American Chemical Society.

[13]  Yu Liu,et al.  Dual-stimulus luminescent lanthanide molecular switch based on an unsymmetrical diarylperfluorocyclopentene. , 2013, Journal of the American Chemical Society.

[14]  D. Qu,et al.  A ferrocene-functionalized [2]rotaxane with two fluorophores as stoppers. , 2013, The Journal of organic chemistry.

[15]  J. W. Ward,et al.  Sequence-Specific Peptide Synthesis by an Artificial Small-Molecule Machine , 2013, Science.

[16]  Hao Li,et al.  Photoinduced memory effect in a redox controllable bistable mechanical molecular switch. , 2012, Angewandte Chemie.

[17]  Ben L Feringa,et al.  Dynamic Control of Chiral Space in a Catalytic Asymmetric Reaction Using a Molecular Motor , 2011, Science.

[18]  Richard A. Muscat,et al.  A programmable molecular robot. , 2011, Nano letters.

[19]  J. Killian,et al.  Ruthenium-decorated lipid vesicles: light-induced release of [Ru(terpy)(bpy)(OH2)]2+ and thermal back coordination. , 2011, Journal of the American Chemical Society.

[20]  N. Seeman,et al.  A Proximity-Based Programmable DNA Nanoscale Assembly Line , 2010, Nature.

[21]  David A Leigh,et al.  A synthetic small molecule that can walk down a track. , 2010, Nature chemistry.

[22]  Friedrich C Simmel,et al.  Processive motion of bipedal DNA walkers. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  A. Credi,et al.  Artificial molecular shuttles: from concepts to devices , 2009 .

[24]  Daoben Zhu,et al.  A novel supramolecular system: combination of two switchable processes in a [2]rotaxane. , 2008, Chemistry, an Asian journal.

[25]  M. Prato,et al.  Tuning electron transfer through translational motion in molecular shuttles. , 2007, Angewandte Chemie.

[26]  A. Credi,et al.  Molecular Devices and Machines , 2007, New Frontiers in Nanochemistry.

[27]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[28]  J. F. Stoddart,et al.  Photoinduced electron flow in a self-assembling supramolecular extension cable , 2006, Proceedings of the National Academy of Sciences.

[29]  J. Sauvage,et al.  Synthesis and photochemistry of a two-position Ru(terpy)(phen)(L)2+ scorpionate complex. , 2006, Inorganic chemistry.

[30]  Vincenzo Balzani,et al.  Operating molecular elevators. , 2006, Journal of the American Chemical Society.

[31]  Alberto Credi,et al.  Shuttling dynamics in an acid-base-switchable [2]rotaxane. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[32]  D. Qu,et al.  A half adder based on a photochemically driven [2]rotaxane. , 2005, Angewandte Chemie.

[33]  Euan R. Kay,et al.  A Reversible Synthetic Rotary Molecular Motor , 2004, Science.

[34]  Jean-Pierre Sauvage,et al.  Light-driven machine prototypes based on dissociative excited states: photoinduced decoordination and thermal recoordination of a ring in a ruthenium(II)-containing [2]catenane. , 2004, Angewandte Chemie.

[35]  J. Sauvage,et al.  Photochemical and thermal ligand exchange in a ruthenium(II) complex based on a scorpionate terpyridine ligand. , 2003, Chemical communications.

[36]  Vincenzo Balzani,et al.  Photoinduced electron transfer in a triad that can be assembled/disassembled by two different external inputs. Toward molecular-level electrical extension cables. , 2002, Journal of the American Chemical Society.

[37]  David J. Williams,et al.  Acid−Base Controllable Molecular Shuttles† , 1998 .

[38]  D. McMillin,et al.  Evidence for dissociative photosubstitution reactions of (acetonitrile)(bipyridine)(terpyridine)ruthenium(2+). Crystal and molecular structure of [Ru(trpy)(bpy)(py)](PF6)2.cntdot.(CH3)2CO , 1991 .

[39]  Vincenzo Balzani,et al.  Ru(II) polypyridine complexes: photophysics, photochemistry, eletrochemistry, and chemiluminescence , 1988 .

[40]  R. Watts,et al.  Photochemistry of tris(2,2'-bipyridyl)ruthenium(II) in aqueous solutions , 1978 .

[41]  En Lki ki't Killian † , 1921 .

[42]  Alberto Credi,et al.  Light-powered autonomous and directional molecular motion of a dissipative self-assembling system. , 2015, Nature nanotechnology.

[43]  Jing Pan,et al.  A synthetic DNA motor that transports nanoparticles along carbon nanotubes. , 2014, Nature nanotechnology.

[44]  Euan R. Kay,et al.  Synthetische molekulare Motoren und mechanische Maschinen , 2007 .

[45]  J. F. Stoddart,et al.  A chemically and electrochemically switchable molecular shuttle , 1994, Nature.