Virtual Observatories, Data Mining, and Astroinformatics

[1]  G. Abell The Distribution of rich clusters of galaxies , 1958 .

[2]  S. Sharpless A Catalogue of H II Regions. , 1959 .

[3]  B. T. Lynds Catalogue of Dark Nebulae. , 1962 .

[4]  W. L. Sebok,et al.  Optimal classification of images into stars or galaxies - a Bayesian approach. , 1979 .

[5]  S. Djorgovski,et al.  Fundamental Properties of Elliptical Galaxies , 1987 .

[6]  R. Davies,et al.  Spectroscopy and photometry of elliptical galaxies. I: a new distance estimator , 1987 .

[7]  Simon Kasif,et al.  A System for Induction of Oblique Decision Trees , 1994, J. Artif. Intell. Res..

[8]  J. Ross Quinlan,et al.  Bagging, Boosting, and C4.5 , 1996, AAAI/IAAI, Vol. 1.

[9]  David Bazell,et al.  A Comparison of Neural Network Algorithms and Preprocessing Methods for Star-Galaxy Discrimination , 1998 .

[10]  Kirk D. Borne Data Mining in Astronomical Databases , 2000, ArXiv.

[11]  F. Ochsenbein,et al.  The VizieR database of astronomical catalogues , 2000, astro-ph/0002122.

[12]  Robert J. Brunner,et al.  Massive datasets in astronomy , 2001 .

[13]  Robert J. Brunner,et al.  The National Virtual Observatory , 2001 .

[14]  Robert J. Brunner,et al.  Exploration of parameter spaces in a virtual observatory , 2001, SPIE Optics + Photonics.

[15]  Alexander S. Szalay,et al.  Petabyte Scale Data Mining: Dream or Reality? , 2002, SPIE Astronomical Telescopes + Instrumentation.

[16]  Anne E. Trefethen,et al.  The UK e-Science Core Programme and the Grid , 2002, Future Gener. Comput. Syst..

[17]  Kirk D. Borne Distributed data mining in the National Virtual Observatory , 2003, SPIE Defense + Commercial Sensing.

[18]  Applicability of Emerging Resource Discovery Standards to the VO , 2004 .

[19]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[20]  A. Cimatti,et al.  A catalogue of the Chandra Deep Field South with multi-colour classification and photometric redshifts from COMBO-17 , 2004, astro-ph/0403666.

[21]  Alexander S. Szalay,et al.  Where the Rubber Meets the Sky: Bridging the Gap between Databases and Science , 2004, IEEE Data Eng. Bull..

[22]  F. Ochsenbein,et al.  Astronomical Data Analysis Software and Systems (ADASS) XIII , 2004 .

[23]  Kirk D. Borne,et al.  eScience and archiving for space science , 2005, Data Sci. J..

[24]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[25]  R. Missaoui,et al.  Similarity measures for efficient content-based image retrieval , 2005 .

[26]  An exact equilibrium model of an unbound stellar system in a tidal field , 2005, astro-ph/0502374.

[27]  Robert G. Raskin,et al.  Knowledge representation in the semantic web for Earth and environmental terminology (SWEET) , 2005, Comput. Geosci..

[28]  Alexander S. Szalay,et al.  Designing a multi-petabyte database for LSST , 2005, SPIE Astronomical Telescopes + Instrumentation.

[29]  Alexander S. Szalay,et al.  Petascale computational systems , 2007, Computer.

[30]  Robert J. Brunner,et al.  Robust Machine Learning Applied to Astronomical Data Sets. I. Star-Galaxy Classification of the Sloan Digital Sky Survey DR3 Using Decision Trees , 2006, astro-ph/0606541.

[31]  Matthew J. Graham,et al.  The National Virtual Observatory: Tools and Techniques for Astronomical Research , 2007 .

[32]  L. M. Sarro,et al.  Automated supervised classification of variable stars - I. Methodology , 2007, 0711.0703.

[33]  Joel H. Kastner,et al.  An X-Ray Spectral Classification Algorithm with Application to Young Stellar Clusters , 2007 .

[34]  Kirk D. Borne A machine learning classification broker for the LSST transient database , 2008 .

[35]  Richard L. White Astronomical Applications of Oblique Decision Trees , 2008 .

[36]  C. Aerts,et al.  Automated supervised classification of variable stars II. Application to the OGLE database , 2008, 0806.3386.

[37]  Gamma-ray Bursts, Classified Physically , 2008, 0804.0965.

[38]  K. D. Borne,et al.  The LSST Data Mining Research Agenda , 2008, 0811.0167.

[39]  Pavlos Protopapas,et al.  Finding anomalous periodic time series , 2009, Machine Learning.

[40]  et al,et al.  Parametrization and Classification of 20 Billion LSST Objects: Lessons from SDSS , 2008 .

[41]  William Gropp,et al.  Applied Mathematics at the U.S. Department of Energy: Past, Present and a View to the Future , 2008 .

[42]  J. Bloom,et al.  Towards a Real-time Transient Classification Engine , 2008, 0802.2249.

[43]  G. Rossi,et al.  Unbiased estimates of galaxy scaling relations from photometric redshift surveys , 2007, 0710.1165.

[44]  Timothy E. Eastman,et al.  Complementary Frameworks of Scientific Inquiry: Hypothetico-Deductive, Hypothetico-Inductive, and Observational-Inductive , 2009 .

[45]  Comment: Preserving digital data for the future of escience , 2009 .

[46]  Arie Shoshani,et al.  Scientific Data Management - Challenges, Technology, and Deployment , 2009, Scientific Data Management.

[47]  A. Szalay,et al.  GALEX–SDSS CATALOGS FOR STATISTICAL STUDIES , 2009, 0904.1392.

[48]  Canada.,et al.  Data Mining and Machine Learning in Astronomy , 2009, 0906.2173.

[49]  Xindong Wu,et al.  The Top Ten Algorithms in Data Mining , 2009 .

[50]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[51]  A. Nobel,et al.  Finding large average submatrices in high dimensional data , 2009, 0905.1682.

[52]  Kirk D. Borne,et al.  Astroinformatics: A 21st Century Approach to Astronomy , 2009, ArXiv.

[53]  John Elder,et al.  Handbook of Statistical Analysis and Data Mining Applications , 2009 .

[54]  Alexander S. Szalay,et al.  RANDOM FORESTS FOR PHOTOMETRIC REDSHIFTS , 2010 .

[55]  Kirk D. Borne Astroinformatics: data-oriented astronomy research and education , 2010, Earth Sci. Informatics.

[56]  V. Trimble,et al.  Productivity and impact of astronomical facilities: A recent sample , 2010 .

[57]  Doug Tody,et al.  Building archives in the virtual observatory era , 2010, Astronomical Telescopes + Instrumentation.

[58]  K. Pimbblet Backsplash galaxies in isolated clusters , 2010, 1010.3468.

[59]  Jordan Raddick,et al.  Galaxy Zoo: Morphological Classification and Citizen Science , 2011, 1104.5513.

[60]  Kirk D. Borne,et al.  Scalable, asynchronous, distributed eigen monitoring of astronomy data streams , 2011, Stat. Anal. Data Min..

[61]  Ian H. Witten,et al.  Chapter 1 – What's It All About? , 2011 .

[62]  L. Paioro,et al.  Simple Application Messaging Protocol Version 1.3 , 2011, 1110.0528.

[63]  Kirk D. Borne,et al.  Surprise Detection in Multivariate Astronomical Data , 2012 .

[64]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .