Uncertainty Principles in Krein Space

Uncertainty relations between two general non-commuting self-adjoint operators are derived in a Krein space. All of these relations involve a Krein space induced fundamental symmetry operator, J , while some of these generalized relations involve an anti-commutator, a commutator, and various other nonlinear functions of the two operators in question. As a consequence there exist classes of non-self-adjoint operators on Hilbert spaces such that the non-vanishing of their commutator implies an uncertainty relation. All relations include the classical Heisenberg uncertainty principle as formulated in Hilbert Space by Von Neumann and others. In addition, we derive an operator dependent (nonlinear) commutator uncertainty relation in Krein space.

[1]  W. L. Cowley The Uncertainty Principle , 1949, Nature.

[2]  D. A. Edwards The mathematical foundations of quantum mechanics , 1979, Synthese.

[3]  S. Zienau Quantum Physics , 1969, Nature.

[4]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[5]  W. Heisenberg The Physical Principles of the Quantum Theory , 1930 .

[6]  T. Azizov,et al.  Linear Operators in Spaces with an Indefinite Metric , 1989 .

[7]  Zhang Lichun,et al.  Bekenstein-Hawking Cosmological Entropy and Correction Term Corresponding Cosmological Horizon of Rotating and Charged Black String , 2009 .

[8]  H. Langer,et al.  Sturm-Liouville operators with an indefinite weight function , 1977, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[9]  E. U. Condon REMARKS ON UNCERTAINTY PRINCIPLES. , 1929, Science.

[10]  A. Mingarelli A survey of the regular weighted Sturm-Liouville problem - The non-definite case , 2011, 1106.6013.

[11]  H. Langer,et al.  Introduction to the spectral theory of operators in spaces with an indefinite metric , 1982 .

[12]  R. Peierls,et al.  Erweiterung des Unbestimmtheitsprinzips für die relativistische Quantentheorie , 1931 .

[13]  K. Nagy State vector spaces with indefinite metric in quantum field theory , 1966 .

[14]  R. Gamkrelidze Hermitian Operators in a Space With an Indefinite Metric * , 2019, L. S. Pontryagin Selected Works.

[15]  L. Broglie,et al.  Heisenberg’s Uncertainties and the Probabilistic Interpretation of Wave Mechanics: with Critical Notes of the Author , 1990 .