Divergent Predictive States: The Statistical Complexity Dimension of Stationary, Ergodic Hidden Markov Processes

Even simply defined, finite-state generators produce stochastic processes that require tracking an uncountable infinity of probabilistic features for optimal prediction. For processes generated by hidden Markov chains, the consequences are dramatic. Their predictive models are generically infinite state. Until recently, one could determine neither their intrinsic randomness nor structural complexity. The prequel to this work introduced methods to accurately calculate the Shannon entropy rate (randomness) and to constructively determine their minimal (though, infinite) set of predictive features. Leveraging this, we address the complementary challenge of determining how structured hidden Markov processes are by calculating their statistical complexity dimension-the information dimension of the minimal set of predictive features. This tracks the divergence rate of the minimal memory resources required to optimally predict a broad class of truly complex processes.

[1]  D. Ruelle SENSITIVE DEPENDENCE ON INITIAL CONDITION AND TURBULENT BEHAVIOR OF DYNAMICAL SYSTEMS , 1979 .

[2]  James P. Crutchfield,et al.  Computation at the Onset of Chaos , 1991 .

[3]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[4]  Mohammad Rezaeian Hidden Markov Process: A New Representation, Entropy Rate and Estimation Entropy , 2006, ArXiv.

[5]  Hidden Markov models for stochastic thermodynamics , 2015 .

[6]  J. Yorke,et al.  Dimension of chaotic attractors , 1982 .

[7]  James P. Crutchfield,et al.  Functional Thermodynamics of Maxwellian Ratchets: Constructing and Deconstructing Patterns, Randomizing and Derandomizing Behaviors , 2020 .

[8]  P. A. P. Moran,et al.  Additive functions of intervals and Hausdorff measure , 1946, Mathematical Proceedings of the Cambridge Philosophical Society.

[9]  James P. Crutchfield,et al.  Time resolution dependence of information measures for spiking neurons: scaling and universality , 2015, Front. Comput. Neurosci..

[10]  Kazuyuki Aihara,et al.  Rigorous numerical Estimation of Lyapunov exponents and Invariant Measures of Iterated Function Systems and Random Matrix Products , 2000, Int. J. Bifurc. Chaos.

[11]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[12]  Neri Merhav,et al.  Hidden Markov processes , 2002, IEEE Trans. Inf. Theory.

[13]  James P. Crutchfield,et al.  Measurement-induced randomness and structure in controlled qubit processes. , 2019, Physical review. E.

[14]  James P. Crutchfield,et al.  Shannon Entropy Rate of Hidden Markov Processes , 2021, Journal of Statistical Physics.

[15]  G. A. Edgar Measure, Topology, and Fractal Geometry , 1990 .

[16]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[17]  Lukasz Dkebowski,et al.  On Hidden Markov Processes with Infinite Excess Entropy , 2012, 1211.0834.

[18]  Abraham Boyarsky,et al.  A MATRIX METHOD FOR APPROXIMATING FRACTAL MEASURES , 1992 .

[19]  Lukasz Dkebowski,et al.  Excess entropy in natural language: present state and perspectives , 2011, Chaos.

[20]  James P. Crutchfield,et al.  Infinite Excess Entropy Processes with Countable-State Generators , 2011, Entropy.

[21]  G. Benettin,et al.  Kolmogorov Entropy and Numerical Experiments , 1976 .

[22]  Jianxin Wu Hidden Markov model , 2018 .

[23]  James P. Crutchfield,et al.  Exact Complexity: The Spectral Decomposition of Intrinsic Computation , 2013, ArXiv.

[24]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[25]  D. Turcotte Fractals and Chaos in Geology and Geophysics , 1992 .

[26]  Alex Bateman,et al.  An introduction to hidden Markov models. , 2007, Current protocols in bioinformatics.

[27]  James P. Crutchfield,et al.  Computational Mechanics: Pattern and Prediction, Structure and Simplicity , 1999, ArXiv.

[28]  Ewan Birney,et al.  Hidden Markov models in biological sequence analysis , 2001, IBM J. Res. Dev..

[29]  James P. Crutchfield,et al.  Nearly Maximally Predictive Features and Their Dimensions , 2017, Physical review. E.

[30]  T. Rydén,et al.  Stylized Facts of Daily Return Series and the Hidden Markov Model , 1998 .

[31]  Hui Rao,et al.  On the open set condition for self-similar fractals , 2005 .

[32]  Benjamin A Carreras,et al.  Complex systems analysis of series of blackouts: cascading failure, critical points, and self-organization. , 2007, Chaos.

[33]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[34]  Andrea J. Goldsmith,et al.  Capacity of Finite State Channels Based on Lyapunov Exponents of Random Matrices , 2006, IEEE Transactions on Information Theory.

[35]  James Odell,et al.  Between order and chaos , 2011, Nature Physics.

[36]  B. Bárány On the Ledrappier–Young formula for self-affine measures , 2015, Mathematical Proceedings of the Cambridge Philosophical Society.

[37]  Y. Pesin Dimension Theory in Dynamical Systems: Contemporary Views and Applications , 1997 .

[38]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[39]  Ursula Dresdner,et al.  Computation Finite And Infinite Machines , 2016 .

[40]  A. Rényi On the dimension and entropy of probability distributions , 1959 .

[41]  Karol Zyczkowski,et al.  Entropy computing via integration over fractal measures. , 1998, Chaos.

[42]  J. Crutchfield,et al.  Regularities unseen, randomness observed: levels of entropy convergence. , 2001, Chaos.

[43]  Yakov Pesin,et al.  The Multiplicative Ergodic Theorem , 2013 .

[44]  J. Crutchfield The calculi of emergence: computation, dynamics and induction , 1994 .

[45]  F. Ledrappier,et al.  The metric entropy of diffeomorphisms Part II: Relations between entropy, exponents and dimension , 1985 .

[46]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[47]  Ya. G. Sinai,et al.  On the Notion of Entropy of a Dynamical System , 2010 .

[48]  A. N. Kolmogorov Combinatorial foundations of information theory and the calculus of probabilities , 1983 .

[49]  J. Elton An ergodic theorem for iterated maps , 1987, Ergodic Theory and Dynamical Systems.

[50]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[51]  Aaron D. Wyner,et al.  A Universal Turing Machine with Two Internal States , 1993 .

[52]  J. Yorke,et al.  Chaotic behavior of multidimensional difference equations , 1979 .

[53]  James P. Crutchfield,et al.  Many Roads to Synchrony: Natural Time Scales and Their Algorithms , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  Philippe Jacquet,et al.  On the entropy of a hidden Markov process , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[55]  M. Rams,et al.  On the Hausdorff Dimension of Invariant Measures of Weakly Contracting on Average Measurable IFS , 2007, 0707.3532.

[56]  Aaron A. King,et al.  Time series analysis via mechanistic models , 2008, 0802.0021.

[57]  A. N. Kolmogorov,et al.  Foundations of the theory of probability , 1960 .

[58]  Young,et al.  Inferring statistical complexity. , 1989, Physical review letters.