A refinement of a congruence result by van Hamme and Mortenson

Let $p$ be an odd prime. In 2008 E. Mortenson proved van Hamme's following conjecture: $$\sum_{k=0}^{(p-1)/2}(4k+1)\binom{-1/2}k^3\equiv (-1)^{(p-1)/2}p\pmod{p^3}.$$ In this paper we show further that \begin{align*}\sum_{k=0}^{p-1}(4k+1)\binom{-1/2}k^3\equiv &\sum_{k=0}^{(p-1)/2}(4k+1)\binom{-1/2}k^3 \\\equiv & (-1)^{(p-1)/2}p+p^3E_{p-3} \pmod{p^4},\end{align*}where $E_0,E_1,E_2,\ldots$ are Euler numbers. We also prove that if $p>3$ then $$\sum_{k=0}^{(p-1)/2}\frac{20k+3}{(-2^{10})^k}\binom{4k}{k,k,k,k}\equiv(-1)^{(p-1)/2}p(2^{p-1}+2-(2^{p-1}-1)^2)\pmod{p^4}.$$

[1]  Zhi-Hong Sun Congruences concerning Legendre polynomials , 2010, 1012.3833.

[2]  Ling Long,et al.  Hypergeometric evaluation identities and supercongruences , 2009, 0912.0197.

[3]  F. Morley,et al.  Note on the Congruence 2 4n ≡(-) n (2n)!/(n!) 2 , Where 2n + 1 is a Prime , 1894 .

[4]  Zhi-Wei Sun,et al.  Congruences for the second-order Catalan numbers , 2010 .

[5]  Zhi-Wei Sun,et al.  Super congruences and Euler numbers , 2010, 1001.4453.

[6]  Frederick Pollock,et al.  On Certain Properties of Prime Numbers. , 1843 .

[7]  Doron Zeilberger,et al.  A WZ proof of Ramanujan's Formula for Pi , 1993 .

[8]  Doron Zeilberger,et al.  Hypergeometric series acceleration via the WZ method , 1997, Electron. J. Comb..

[9]  Emma Lehmer,et al.  On Congruences Involving Bernoulli Numbers and the Quotients of Fermat and Wilson , 1938 .

[10]  Zhi-Wei Sun,et al.  On congruences related to central binomial coefficients , 2009, 0911.2415.

[11]  Wadim Zudilin,et al.  Ramanujan-type supercongruences , 2008, 0805.2788.

[12]  Eric T. Mortenson,et al.  A p-ADIC SUPERCONGRUENCE CONJECTURE OF VAN HAMME , 2008 .

[13]  Zhi-Wei Sun,et al.  Some congruences for the second-order Catalan numbers , 2009, 0909.3733.

[14]  Bruce C. Berndt,et al.  Ramanujan's Series for 1/π: A Survey , 2009, Am. Math. Mon..

[15]  Jonathan M. Borwein,et al.  Modular Equations and Approximations to π , 2000 .

[16]  Bruce C. Berndt,et al.  Eisenstein series and Ramanujan-type series for 1/π , 2010 .

[17]  B. Berndt Ramanujan’s Notebooks: Part V , 1997 .

[18]  B. Berndt Ramanujan's Notebooks , 1985 .