Numerical simulation of dynamic fracture using finite elements with embedded discontinuities

This paper presents the extension of some finite elements with embedded strong discontinuities to the fully transient range with the focus on dynamic fracture. Cracks and shear bands are modeled in this setting as discontinuities of the displacement field, the so-called strong discontinuities, propagating through the continuum. These discontinuities are embedded into the finite elements through the proper enhancement of the discrete strain field of the element. General elements, like displacement or assumed strain based elements, can be considered in this framework, capturing sharply the kinematics of the discontinuity for all these cases. The local character of the enhancement (local in the sense of defined at the element level, independently for each element) allows the static condensation of the different local parameters considered in the definition of the displacement jumps. All these features lead to an efficient formulation for the modeling of fracture in solids, very easily incorporated in an existing general finite element code due to its modularity. We investigate in this paper the use of this finite element formulation for the special challenges that the dynamic range leads to. Specifically, we consider the modeling of failure mode transitions in ductile materials and crack branching in brittle solids. To illustrate the performance of the proposed formulation, we present a series of numerical simulations of these cases with detailed comparisons with experimental and other numerical results reported in the literature. We conclude that these finite element methods handle well these dynamic problems, still maintaining the aforementioned features of computational efficiency and modularity.

[1]  Paul A. Wawrzynek,et al.  Quasi-automatic simulation of crack propagation for 2D LEFM problems , 1996 .

[2]  Osvaldo L. Manzoli,et al.  A general technique to embed non-uniform discontinuities into standard solid finite elements , 2006 .

[3]  Ares J. Rosakis,et al.  Dynamically propagating shear bands in impact-loaded prenotched plates—I. Experimental investigations of temperature signatures and propagation speed , 1996 .

[4]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[5]  Francisco Armero,et al.  On the characterization of localized solutions in inelastic solids: an analysis of wave propagation in a softening bar , 2001 .

[6]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[7]  Swinney,et al.  Instability in dynamic fracture. , 1991, Physical review letters.

[8]  J. Dally Dynamic photoelastic studies of fracture , 1979 .

[9]  T. Belytschko,et al.  Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment , 2003 .

[10]  E. Yoffe,et al.  The moving Griffith crack , 1951 .

[11]  T. Rabczuk,et al.  Discontinuous modelling of shear bands using adaptive meshfree methods , 2008 .

[12]  Timon Rabczuk,et al.  Extended meshfree methods without branch enrichment for cohesive cracks , 2007 .

[13]  Ted Belytschko,et al.  Mesh-free Galerkin simulations of dynamic shear band propagation and failure mode transition , 2002 .

[14]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[15]  Huajian Gao,et al.  A theory of local limiting speed in dynamic fracture , 1996 .

[16]  Francisco Armero,et al.  Finite element methods for the multi-scale modeling of softening hinge lines in plates at failure , 2006 .

[17]  A. Rosakis,et al.  Full field measurements of the dynamic deformation field around a growing adiabatic shear band at the tip of a dynamically loaded crack or notch , 1994 .

[18]  Huajian Gao Surface roughening and branching instabilities in dynamic fracture , 1993 .

[19]  J. Reddy,et al.  Modeling of crack tip high inertia zone in dynamic brittle fracture , 2007 .

[20]  Huajian Gao,et al.  Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds , 1998 .

[21]  E. Dvorkin,et al.  Finite elements with displacement interpolated embedded localization lines insensitive to mesh size and distortions , 1990 .

[22]  M. Ortiz,et al.  Modelling and simulation of high-speed machining , 1995 .

[23]  A. Needleman,et al.  Mesh effects in the analysis of dynamic ductile crack growth , 1994 .

[24]  A. Rosakis,et al.  Dynamically propagating shear bands in impact-loaded prenotched plates—II. Numerical simulations , 1996 .

[25]  Ted Belytschko,et al.  Modeling fracture in Mindlin–Reissner plates with the extended finite element method , 2000 .

[26]  Jay Fineberg,et al.  Confirming the continuum theory of dynamic brittle fracture for fast cracks , 1999, Nature.

[27]  Huajian Gao,et al.  Physics-based modeling of brittle fracture: Cohesive formulations and the application of meshfree methods , 2000 .

[28]  K. Ravi-Chandar On the failure mode transitions in polycarbonate under dynamic mixed-mode loading , 1995 .

[29]  Paul Steinmann,et al.  Finite element embedded localization band for finite strain plasticity based on a regularized strong discontinuity , 1999 .

[30]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[31]  Glaucio H. Paulino,et al.  Extrinsic cohesive modelling of dynamic fracture and microbranching instability in brittle materials , 2007 .

[32]  Francisco Armero,et al.  Finite elements with embedded strong discontinuities for the modeling of failure in solids , 2007 .

[33]  John W. Hutchinson,et al.  Dynamic Fracture Mechanics , 1990 .

[34]  Jean-François Molinari,et al.  A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials , 2005 .

[35]  V. Tvergaard Effect of fibre debonding in a whisker-reinforced metal , 1990 .

[36]  J. F. Kalthoff Modes of dynamic shear failure in solids , 2000 .

[37]  T. Liszka,et al.  A generalized finite element method for the simulation of three-dimensional dynamic crack propagation , 2001 .

[38]  F. Armero,et al.  An analysis of strong discontinuities in multiplicative finite strain plasticity and their relation with the numerical simulation of strain localization in solids , 1996 .

[39]  J. Oliver MODELLING STRONG DISCONTINUITIES IN SOLID MECHANICS VIA STRAIN SOFTENING CONSTITUTIVE EQUATIONS. PART 2: NUMERICAL SIMULATION , 1996 .

[40]  Wing Kam Liu,et al.  On criteria for dynamic adiabatic shear band propagation , 2007 .

[41]  John R. Rice,et al.  A Critical Evaluation of Cohesive Zone Models of Dynamic Fracture , 2001 .

[42]  G. Sih,et al.  Fracture Mechanics of Concrete: Structural Application and Numerical Calculation , 2011 .

[43]  Francisco Armero,et al.  Numerical modeling of softening hinges in thin Euler-Bernoulli beams , 2006 .

[44]  Albert S. Kobayashi,et al.  Mechanics of crack curving and branching — a dynamic fracture analysis , 1985 .

[45]  Carlos Armando Duarte,et al.  A high‐order generalized FEM for through‐the‐thickness branched cracks , 2007 .

[46]  A. Ingraffea,et al.  Numerical modeling of discrete crack propagation in reinforced and plain concrete , 1985 .

[47]  E. Yoffe,et al.  LXXV. The moving griffith crack , 1951 .

[48]  Francisco Armero,et al.  New finite elements with embedded strong discontinuities in the finite deformation range , 2008 .

[49]  Paul A. Wawrzynek,et al.  Automated 3‐D crack growth simulation , 2000 .

[50]  J. Molinari,et al.  Dynamic crack propagation with cohesive elements: a methodology to address mesh dependency , 2004 .

[51]  R. de Borst,et al.  Simulating the propagation of displacement discontinuities in a regularized strain‐softening medium , 2002 .

[52]  T. Belytschko,et al.  Two‐scale shear band evolution by local partition of unity , 2006 .

[53]  K. Ravi-Chandar,et al.  Some basic problems in stress wave dominated fracture , 1985 .

[54]  Jörg F. Kalthoff,et al.  Shadow Optical Analysis Of Dynamic Shear Fracture , 1988 .

[55]  Michael Ortiz,et al.  Adaptive mesh refinement in strain localization problems , 1991 .

[56]  T. Belytschko,et al.  DYNAMIC FRACTURE USING ELEMENT-FREE GALERKIN METHODS , 1996 .

[57]  J. D. Eshelby Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics , 1999 .

[58]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[59]  Abdullah Al Mamun,et al.  Ion Sound Solitary Waves with Density Depressions , 1995 .

[60]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[61]  J. Fineberg,et al.  Microbranching instability and the dynamic fracture of brittle materials. , 1996, Physical review. B, Condensed matter.

[62]  Francisco Armero,et al.  Finite element methods for the analysis of softening plastic hinges in beams and frames , 2005 .

[63]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[64]  J. Oliver MODELLING STRONG DISCONTINUITIES IN SOLID MECHANICS VIA STRAIN SOFTENING CONSTITUTIVE EQUATIONS. PART 1: FUNDAMENTALS , 1996 .

[65]  Francisco Armero,et al.  Finite elements with embedded branching , 2009 .

[66]  A. Needleman,et al.  The simulation of dynamic crack propagation using the cohesive segments method , 2008 .

[67]  A. Needleman,et al.  Analysis of a brittle-ductile transition under dynamic shear loading , 1995 .

[68]  K. Ravi-Chandar,et al.  An experimental investigation into dynamic fracture: II. Microstructural aspects , 1984 .

[69]  Ted Belytschko,et al.  A method for dynamic crack and shear band propagation with phantom nodes , 2006 .

[70]  J. Z. Zhu,et al.  The finite element method , 1977 .

[71]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[72]  K. Ravi-Chandar,et al.  An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching , 1984 .

[73]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[74]  A. Huespe,et al.  A comparative study on finite elements for capturing strong discontinuities: E-FEM vs X-FEM , 2006 .

[75]  F. Armero,et al.  Large‐scale modeling of localized dissipative mechanisms in a local continuum: applications to the numerical simulation of strain localization in rate‐dependent inelastic solids , 1999 .