An automated (Markov chain) Monte Carlo EM algorithm
暂无分享,去创建一个
[1] Hani Doss. Discussion: Markov Chains for Exploring Posterior Distributions , 1994 .
[2] C. Robert,et al. Convergence Controls for MCMC Algorithms with Applications to Hidden Markov Chains , 1999 .
[3] C. McCulloch. Maximum Likelihood Variance Components Estimation for Binary Data , 1994 .
[4] C. Robert. Simulation of truncated normal variables , 2009, 0907.4010.
[5] Jun S. Liu,et al. Monte Carlo EM with importance reweighting and its applications in random effects models 1 1 This wo , 1999 .
[6] Andrew L. Rukhin,et al. Tools for statistical inference , 1991 .
[7] Bin Yu,et al. Regeneration in Markov chain samplers , 1995 .
[8] A. Kuk,et al. MAXIMUM LIKELIHOOD ESTIMATION FOR PROBIT-LINEAR MIXED MODELS WITH CORRELATED RANDOM EFFECTS , 1997 .
[9] George Casella,et al. Implementations of the Monte Carlo EM Algorithm , 2001 .
[10] J. H. Schuenemeyer,et al. Generalized Linear Models (2nd ed.) , 1992 .
[11] G. C. Wei,et al. A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .
[12] New York Dover,et al. ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .
[13] N. L. Johnson,et al. Multivariate Analysis , 1958, Nature.
[14] C. McCulloch. Maximum Likelihood Algorithms for Generalized Linear Mixed Models , 1997 .
[15] J. Booth,et al. Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm , 1999 .
[16] C. Geyer,et al. Discussion: Markov Chains for Exploring Posterior Distributions , 1994 .
[17] D. V. Dyk. NESTING EM ALGORITHMS FOR COMPUTATIONAL EFFICIENCY , 2000 .
[18] Christian P. Robert,et al. Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.