An Analysis of Quantum Fokker-Planck Models: A Wigner Function Approach

The analysis of dissipative transport equations within the framework of open quantum systems with Fokker-Planck-type scattering is carried out from the perspective of a Wigner function approach. In particular, the well-posedness of the self-consistent whole-space problem in 3D is analyzed: existence of solutions, uniqueness and asymptotic behavior in time, where we adopt the viewpoint of mild solutions in this paper. Also, the admissibility of a density matrix formulation in Lindblad form with Fokker-Planck dissipation mechanisms is discussed. We remark that our solution concept allows to carry out the analysis directly on the level of the kinetic equation instead of on the level of the density operator.

[1]  F. Bouchut Smoothing Effect for the Non-linear Vlasov-Poisson-Fokker-Planck System , 1995 .

[2]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[3]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[4]  H. Narnhofer,et al.  Entropy behaviour under completely positive maps , 1988 .

[5]  Anton Arnold,et al.  Self-consistent relaxation-time models in quantum mechanics , 1996 .

[6]  F. Nier,et al.  Numerical analysis of the deterministic particle method applied to the Wigner equation , 1992 .

[7]  Juan Soler,et al.  Asymptotic Behavior of an Initial-Boundary Value Problem for the Vlasov-Poisson-Fokker-Planck System , 1997, SIAM J. Appl. Math..

[8]  A. Chebotarev,et al.  Sufficient conditions for conservativity of quantum dynamical semigroups , 1993 .

[9]  Norbert J. Mauser,et al.  THE CLASSICAL LIMIT OF A SELF-CONSISTENT QUANTUM-VLASOV EQUATION IN 3D , 1993 .

[10]  Ana Carpio,et al.  Long-time Behaviour for Solutions of the Vlasov-Poisson-Fokker-Planck Equation , 1998 .

[11]  A. Majda,et al.  Asymptotic Behaviour and Self-Similarity for the Three Dimensional Vlasov Poisson Fokker Planck System , 1995 .

[12]  L. Diósi Calderia-Leggett master equation and medium temperatures , 1993 .

[13]  M. Sentís Quantum theory of open systems , 2002 .

[14]  H. Dekker Quantization of the linearly damped harmonic oscillator , 1977 .

[15]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[16]  H. Risken Fokker-Planck Equation , 1984 .

[17]  François Bouchut,et al.  On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials , 1995, Differential and Integral Equations.

[18]  William R. Frensley,et al.  Boundary conditions for open quantum systems driven far from equilibrium , 1990 .

[19]  H. Neunzert,et al.  On the equivalence of the Schrödinger and the quantum Liouville equations , 1989 .

[20]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[21]  L. Erdős,et al.  Fokker–Planck Equations as Scaling Limits of Reversible Quantum Systems , 2000 .

[22]  G. Cottet,et al.  Three-dimensional Navier-Stokes equations for singular filament initial data , 1988 .

[23]  Barry Simon,et al.  Methods of modern mathematical physics. III. Scattering theory , 1979 .

[24]  Decoherent Histories and Quantum State Diffusion , 1994, gr-qc/9403047.

[25]  H. Neunzert,et al.  Weak solutions of the initial value problem for the unmodified non‐linear vlasov equation , 1984 .

[26]  E. Davies,et al.  Markovian master equations , 1974 .

[27]  P. Markowich,et al.  Homogenization limits and Wigner transforms , 1997 .

[28]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[29]  L. Diósi On High-Temperature Markovian Equation for Quantum Brownian Motion , 1993 .

[30]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[31]  J. P. Kreskovsky,et al.  Transport via the Liouville equation and moments of quantum distribution functions , 1993 .

[32]  H. Dekker,et al.  A fundamental constraint on quantum mechanical diffusion coefficients , 1984 .

[33]  Juan Soler,et al.  On the Vlasov–Poisson–Fokker–Planck Equations with Measures in Morrey Spaces as Initial Data☆ , 1997 .

[34]  W. Thirring Lehrbuch der Mathematischen Physik , 1977 .

[35]  Vishwamittar,et al.  On the quantization of linearly damped harmonic oscillator , 1991 .

[36]  J. Elgin The Fokker-Planck Equation: Methods of Solution and Applications , 1984 .

[37]  A. Leggett,et al.  Path integral approach to quantum Brownian motion , 1983 .

[38]  M. Stroscio Moment-equation representation of the dissipative quantum Liouville equation , 1986 .

[39]  M. Reed,et al.  Methods of Modern Mathematical Physics. 2. Fourier Analysis, Self-adjointness , 1975 .

[40]  Global L1 theory and regularity for the 3D nonlinear Wigner–Poisson–Fokker–Planck system , 2004 .

[41]  乔花玲,et al.  关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .